20,281 research outputs found

    A convergent Born series for solving the inhomogeneous Helmholtz equation in arbitrarily large media

    Get PDF
    We present a fast method for numerically solving the inhomogeneous Helmholtz equation. Our iterative method is based on the Born series, which we modified to achieve convergence for scattering media of arbitrary size and scattering strength. Compared to pseudospectral time-domain simulations, our modified Born approach is two orders of magnitude faster and nine orders of magnitude more accurate in benchmark tests in 1-dimensional and 2-dimensional systems

    Shifted Laplacian multigrid for the elastic Helmholtz equation

    Full text link
    The shifted Laplacian multigrid method is a well known approach for preconditioning the indefinite linear system arising from the discretization of the acoustic Helmholtz equation. This equation is used to model wave propagation in the frequency domain. However, in some cases the acoustic equation is not sufficient for modeling the physics of the wave propagation, and one has to consider the elastic Helmholtz equation. Such a case arises in geophysical seismic imaging applications, where the earth's subsurface is the elastic medium. The elastic Helmholtz equation is much harder to solve than its acoustic counterpart, partially because it is three times larger, and partially because it models more complicated physics. Despite this, there are very few solvers available for the elastic equation compared to the array of solvers that are available for the acoustic one. In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation, by combining the complex shift idea with approaches for linear elasticity. We demonstrate the efficiency and properties of our solver using numerical experiments for problems with heterogeneous media in two and three dimensions

    On the indefinite Helmholtz equation: complex stretched absorbing boundary layers, iterative analysis, and preconditioning

    Full text link
    This paper studies and analyzes a preconditioned Krylov solver for Helmholtz problems that are formulated with absorbing boundary layers based on complex coordinate stretching. The preconditioner problem is a Helmholtz problem where not only the coordinates in the absorbing layer have an imaginary part, but also the coordinates in the interior region. This results into a preconditioner problem that is invertible with a multigrid cycle. We give a numerical analysis based on the eigenvalues and evaluate the performance with several numerical experiments. The method is an alternative to the complex shifted Laplacian and it gives a comparable performance for the studied model problems

    Shape and Trajectory Tracking of Moving Obstacles

    Full text link
    This work presents new methods and algorithms for tracking the shape and trajectory of moving reflecting obstacles with broken rays, or rays reflecting at an obstacle. While in tomography the focus of the reconstruction method is to recover the velocity structure of the domain, the shape and trajectory reconstruction procedure directly finds the shape and trajectory of the obstacle. The physical signal carrier for this innovative method are ultrasonic beams. When the speed of sound is constant, the rays are straight line segments and the shape and trajectory of moving objects will be reconstructed with methods based on the travel time equation and ellipsoid geometry. For variable speed of sound, we start with the eikonal equation and a system of differential equations that has its origins in acoustics and seismology. In this case, the rays are curves that are not necessarily straight line segments and we develop algorithms for shape and trajectory tracking based on the numerical solution of these equations. We present methods and algorithms for shape and trajectory tracking of moving obstacles with reflected rays when the location of the receiver of the reflected ray is not known in advance. The shape and trajectory tracking method is very efficient because it is not necessary for the reflected signal to traverse the whole domain or the same path back to the transmitter. It could be received close to the point of reflection or far away from the transmitter. This optimizes the energy spent by transmitters for tracking the object, reduces signal attenuation and improves image resolution. It is a safe and secure method. We also present algorithms for tracking the shape and trajectory of absorbing obstacles. The new methods and algorithms for shape and trajectory tracking enable new applications and an application to one-hop Internet routing is presented.Comment: 22 pages, 2 figures, 2 table
    corecore