154,833 research outputs found

    PynPoint: a modular pipeline architecture for processing and analysis of high-contrast imaging data

    Full text link
    The direct detection and characterization of planetary and substellar companions at small angular separations is a rapidly advancing field. Dedicated high-contrast imaging instruments deliver unprecedented sensitivity, enabling detailed insights into the atmospheres of young low-mass companions. In addition, improvements in data reduction and PSF subtraction algorithms are equally relevant for maximizing the scientific yield, both from new and archival data sets. We aim at developing a generic and modular data reduction pipeline for processing and analysis of high-contrast imaging data obtained with pupil-stabilized observations. The package should be scalable and robust for future implementations and in particular well suitable for the 3-5 micron wavelength range where typically (ten) thousands of frames have to be processed and an accurate subtraction of the thermal background emission is critical. PynPoint is written in Python 2.7 and applies various image processing techniques, as well as statistical tools for analyzing the data, building on open-source Python packages. The current version of PynPoint has evolved from an earlier version that was developed as a PSF subtraction tool based on PCA. The architecture of PynPoint has been redesigned with the core functionalities decoupled from the pipeline modules. Modules have been implemented for dedicated processing and analysis steps, including background subtraction, frame registration, PSF subtraction, photometric and astrometric measurements, and estimation of detection limits. The pipeline package enables end-to-end data reduction of pupil-stabilized data and supports classical dithering and coronagraphic data sets. As an example, we processed archival VLT/NACO L' and M' data of beta Pic b and reassessed the planet's brightness and position with an MCMC analysis, and we provide a derivation of the photometric error budget.Comment: 16 pages, 9 figures, accepted for publication in A&A, PynPoint is available at https://github.com/PynPoint/PynPoin

    The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release

    Full text link
    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of ∼\sim80 deg2^2 of the southern sky located in two fields: (α\alpha,δ\delta)= (5 hr, −55∘-55^{\circ}) and (23 hr, −55∘-55^{\circ}). The survey was carried out between 2005 and 2008 in grizgriz bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF corrected model fitting photometry for all detected objects. The median 10σ\sigma galaxy (point source) depths over the survey in grizgriz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is ∼45\sim45 milli-arcsec. We calibrate our absolute photometry using the stellar locus in grizJgrizJ bands, and thus our absolute photometric scale derives from 2MASS which has ∼2\sim2% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in grizgriz that is ∼\sim1.9%, ∼\sim2.2%, ∼\sim2.7% and∼\sim2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier {\tt spread\_model} produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter δz/(1+z)=0.054\delta z/(1+z)=0.054 with an outlier fraction η<5\eta<5% to z∼1z\sim1. We highlight some selected science results to date and provide a full description of the released data products.Comment: 23 pages, 23 figures . Response to referee comments. Paper accepted for publication. BCS catalogs and images available for download from http://www.usm.uni-muenchen.de/BC

    Image operator learning coupled with CNN classification and its application to staff line removal

    Full text link
    Many image transformations can be modeled by image operators that are characterized by pixel-wise local functions defined on a finite support window. In image operator learning, these functions are estimated from training data using machine learning techniques. Input size is usually a critical issue when using learning algorithms, and it limits the size of practicable windows. We propose the use of convolutional neural networks (CNNs) to overcome this limitation. The problem of removing staff-lines in music score images is chosen to evaluate the effects of window and convolutional mask sizes on the learned image operator performance. Results show that the CNN based solution outperforms previous ones obtained using conventional learning algorithms or heuristic algorithms, indicating the potential of CNNs as base classifiers in image operator learning. The implementations will be made available on the TRIOSlib project site.Comment: To appear in ICDAR 201

    Robust and scalable video compression using matching pursuits and absolute value coding

    Get PDF
    • …
    corecore