9,254 research outputs found

    Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges

    Full text link
    A new traceability chain for the derivation of the farad from dc quantum Hall effect has been implemented at INRIM. Main components of the chain are two new coaxial transformer bridges: a resistance ratio bridge, and a quadrature bridge, both operating at 1541 Hz. The bridges are energized and controlled with a polyphase direct-digital-synthesizer, which permits to achieve both main and auxiliary equilibria in an automated way; the bridges and do not include any variable inductive divider or variable impedance box. The relative uncertainty in the realization of the farad, at the level of 1000 pF, is estimated to be 64E-9. A first verification of the realization is given by a comparison with the maintained national capacitance standard, where an agreement between measurements within their relative combined uncertainty of 420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table

    Compact nonlinear model of an implantable electrode array for spinal cord stimulation (SCS)

    Get PDF
    We describe the construction of a model of the electrode-electrolyte interface and surrounding electrolyte in the case of a platinum-electrode array intended for spinal-cord stimulation (SCS) application. We show that a finite, two dimensional, resistor array provides a satisfactory model of the bulk electrolyte, and we identify the complexity required of that resistor array. The electrode-electrolyte interface is modelled in a fashion suitable for commonly-available, compact simulators using a nonlinear extension of the model of Franks et al. that incorporates diodes and a memristor. The electrode-electrolyte interface model accounts for the nonlinear current-overpotential characteristic and diffusion-limiting effects. We characterise a commercial, implantable, electrode array, fit the model to it, and show that the model successfully predicts subtle operational characteristics

    Performance of a Low Noise Front-end ASIC for Si/CdTe Detectors in Compton Gamma-ray Telescope

    Full text link
    Compton telescopes based on semiconductor technologies are being developed to explore the gamma-ray universe in an energy band 0.1--20 MeV, which is not well covered by the present or near-future gamma-ray telescopes. The key feature of such Compton telescopes is the high energy resolution that is crucial for high angular resolution and high background rejection capability. The energy resolution around 1 keV is required to approach physical limit of the angular resolution due to Doppler broadening. We have developed a low noise front-end ASIC (Application-Specific Integrated Circuit), VA32TA, to realize this goal for the readout of Double-sided Silicon Strip Detector (DSSD) and Cadmium Telluride (CdTe) pixel detector which are essential elements of the semiconductor Compton telescope. We report on the design and test results of the VA32TA. We have reached an energy resolution of 1.3 keV (FWHM) for 60 keV and 122 keV at 0 degree C with a DSSD and 1.7 keV (FWHM) with a CdTe detector.Comment: 6 pages, 7 figures, IEEE style file, to appear in IEEE Trans. Nucl. Sc

    Static flux bias of a flux qubit using persistent current trapping

    Full text link
    Qubits based on the magnetic flux degree of freedom require a flux bias, whose stability and precision strongly affect the qubit performance, up to a point of forbidding the qubit operation. Moreover, in the perspective of multiqubit systems, it must be possible to flux-bias each qubit independently, hence avoiding the traditional use of externally generated magnetic fields in favour of on-chip techniques that minimize cross-couplings. The solution discussed in this paper exploits a persistent current, trapped in a superconducting circuit integrated on chip that can be inductively coupled with an individual qubit. The circuit does not make use of resistive elements that can be detrimental for the qubit coherence. The trapping procedure allows to control and change stepwise the amount of stored current; after that, the circuit can be completely disconnected from the external sources. We show in a practical case how this works and how to drive the bias circuit at the required value.Comment: 5 figures submitted to Superconductor Science and Technolog
    • 

    corecore