7,010 research outputs found

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf

    Fault Diagnosis and Failure Prognostics of Lithium-ion Battery based on Least Squares Support Vector Machine and Memory Particle Filter Framework

    Get PDF
    123456A novel data driven approach is developed for fault diagnosis and remaining useful life (RUL) prognostics for lithium-ion batteries using Least Square Support Vector Machine (LS-SVM) and Memory-Particle Filter (M-PF). Unlike traditional data-driven models for capacity fault diagnosis and failure prognosis, which require multidimensional physical characteristics, the proposed algorithm uses only two variables: Energy Efficiency (EE), and Work Temperature. The aim of this novel framework is to improve the accuracy of incipient and abrupt faults diagnosis and failure prognosis. First, the LSSVM is used to generate residual signal based on capacity fade trends of the Li-ion batteries. Second, adaptive threshold model is developed based on several factors including input, output model error, disturbance, and drift parameter. The adaptive threshold is used to tackle the shortcoming of a fixed threshold. Third, the M-PF is proposed as the new method for failure prognostic to determine Remaining Useful Life (RUL). The M-PF is based on the assumption of the availability of real-time observation and historical data, where the historical failure data can be used instead of the physical failure model within the particle filter. The feasibility of the framework is validated using Li-ion battery prognostic data obtained from the National Aeronautic and Space Administration (NASA) Ames Prognostic Center of Excellence (PCoE). The experimental results show the following: (1) fewer data dimensions for the input data are required compared to traditional empirical models; (2) the proposed diagnostic approach provides an effective way of diagnosing Li-ion battery fault; (3) the proposed prognostic approach can predict the RUL of Li-ion batteries with small error, and has high prediction accuracy; and, (4) the proposed prognostic approach shows that historical failure data can be used instead of a physical failure model in the particle filter

    Boosting Classifiers for Drifting Concepts

    Get PDF
    This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams. --

    Concept Drift Adaptation with Incremental–Decremental SVM

    Get PDF
    Data classification in streams where the underlying distribution changes over time is known to be difficult. This problem—known as concept drift detection—involves two aspects: (i) detecting the concept drift and (ii) adapting the classifier. Online training only considers the most recent samples; they form the so-called shifting window. Dynamic adaptation to concept drift is performed by varying the width of the window. Defining an online Support Vector Machine (SVM) classifier able to cope with concept drift by dynamically changing the window size and avoiding retraining from scratch is currently an open problem. We introduce the Adaptive Incremental–Decremental SVM (AIDSVM), a model that adjusts the shifting window width using the Hoeffding statistical test. We evaluate AIDSVM performance on both synthetic and real-world drift datasets. Experiments show a significant accuracy improvement when encountering concept drift, compared with similar drift detection models defined in the literature. The AIDSVM is efficient, since it is not retrained from scratch after the shifting window slides
    • …
    corecore