801 research outputs found

    Orbital magnetoelectric coupling in band insulators

    Full text link
    Magnetoelectric responses are a fundamental characteristic of materials that break time-reversal and inversion symmetries (notably multiferroics) and, remarkably, of "topological insulators" in which those symmetries are unbroken. Previous work has shown how to compute spin and lattice contributions to the magnetoelectric tensor. Here we solve the problem of orbital contributions by computing the frozen-lattice electronic polarization induced by a magnetic field. One part of this response (the "Chern-Simons term") can appear even in time-reversal-symmetric materials and has been previously shown to be quantized in topological insulators. In general materials there are additional orbital contributions to all parts of the magnetoelectric tensor; these vanish in topological insulators by symmetry and also vanish in several simplified models without time-reversal and inversion those magnetoelectric couplings were studied before. We give two derivations of the response formula, one based on a uniform magnetic field and one based on extrapolation of a long-wavelength magnetic field, and discuss some of the consequences of this formula.Comment: 13 page

    Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

    Get PDF
    We apply the semidefinite programming approach developed in arxiv:math.MG/0608426 to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the SDP framework to get analytic bounds.Comment: 15 pages, (v2) referee comments and suggestions incorporate

    Measurement-Induced Entanglement for Excitation Stored in Remote Atomic Ensembles

    Get PDF
    A critical requirement for diverse applications in Quantum Information Science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory to store these states can enable scalable architectures for quantum computation, communication, and metrology. As a significant step toward such possibilities, here we report observations of entanglement between two atomic ensembles located in distinct apparatuses on different tables. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10^5 atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and by measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations provide a new capability for the distribution and storage of entangled quantum states, including for scalable quantum communication networks .Comment: 13 pages, 4 figures Submitted for publication on August 31 200

    Quantum repeaters based on entanglement purification

    Full text link
    We study the use of entanglement purification for quantum communication over long distances. For distances much longer than the coherence length of a corresponding noisy quantum channel, the fidelity of transmission is usually so low that standard purification methods are not applicable. It is however possible to divide the channel into shorter segments that are purified separately and then connected by the method of entanglement swapping. This method can be much more efficient than schemes based on quantum error correction, as it makes explicit use of two-way classical communication. An important question is how the noise, introduced by imperfect local operations (that constitute the protocols of purification and the entanglement swapping), accumulates in such a compound channel, and how it can be kept below a certain noise level. To treat this problem, we first study the applicability and the efficiency of entanglement purification protocols in the situation of imperfect local operations. We then present a scheme that allows entanglement purification over arbitrary long channels and tolerates errors on the per-cent level. It requires a polynomial overhead in time, and an overhead in local resources that grows only logarithmically with the length of the channel.Comment: 19 pages, 16 figure

    Structural and electronic transformation in low-angle twisted bilayer graphene

    Full text link
    Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moir\'{e} pattern inherent of twisted bilayer graphene taking place at twist angles θ\theta below a crossover angle θ⋆=1.2∘\theta^{\star}=1.2^{\circ}. The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.Comment: published version with supplementary materia

    Continuous-variable optical quantum state tomography

    Full text link
    This review covers latest developments in continuous-variable quantum-state tomography of optical fields and photons, placing a special accent on its practical aspects and applications in quantum information technology. Optical homodyne tomography is reviewed as a method of reconstructing the state of light in a given optical mode. A range of relevant practical topics are discussed, such as state-reconstruction algorithms (with emphasis on the maximum-likelihood technique), the technology of time-domain homodyne detection, mode matching issues, and engineering of complex quantum states of light. The paper also surveys quantum-state tomography for the transverse spatial state (spatial mode) of the field in the special case of fields containing precisely one photon.Comment: Finally, a revision! Comments to lvov(at)ucalgary.ca and raymer(at)uoregon.edu are welcom
    • …
    corecore