3,125 research outputs found

    Minimal stretch maps between hyperbolic surfaces

    Full text link
    This paper develops a theory of Lipschitz comparisons of hyperbolic surfaces analogous to the theory of quasi-conformal comparisons. Extremal Lipschitz maps (minimal stretch maps) and geodesics for the `Lipschitz metric' are constructed. The extremal Lipschitz constant equals the maximum ratio of lengths of measured laminations, which is attained with probability one on a simple closed curve. Cataclysms are introduced, generalizing earthquakes by permitting more violent shearing in both directions along a fault. Cataclysms provide useful coordinates for Teichmuller space that are convenient for computing derivatives of geometric function in Teichmuller space and measured lamination space.Comment: 53 pages, 11 figures, version of 1986 preprin

    Convergence of algorithms for reconstructing convex bodies and directional measures

    Get PDF
    We investigate algorithms for reconstructing a convex body KK in Rn\mathbb {R}^n from noisy measurements of its support function or its brightness function in kk directions u1,...,uku_1,...,u_k. The key idea of these algorithms is to construct a convex polytope PkP_k whose support function (or brightness function) best approximates the given measurements in the directions u1,...,uku_1,...,u_k (in the least squares sense). The measurement errors are assumed to be stochastically independent and Gaussian. It is shown that this procedure is (strongly) consistent, meaning that, almost surely, PkP_k tends to KK in the Hausdorff metric as k→∞k\to\infty. Here some mild assumptions on the sequence (ui)(u_i) of directions are needed. Using results from the theory of empirical processes, estimates of rates of convergence are derived, which are first obtained in the L2L_2 metric and then transferred to the Hausdorff metric. Along the way, a new estimate is obtained for the metric entropy of the class of origin-symmetric zonoids contained in the unit ball. Similar results are obtained for the convergence of an algorithm that reconstructs an approximating measure to the directional measure of a stationary fiber process from noisy measurements of its rose of intersections in kk directions u1,...,uku_1,...,u_k. Here the Dudley and Prohorov metrics are used. The methods are linked to those employed for the support and brightness function algorithms via the fact that the rose of intersections is the support function of a projection body.Comment: Published at http://dx.doi.org/10.1214/009053606000000335 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quantum Einstein Gravity

    Full text link
    We give a pedagogical introduction to the basic ideas and concepts of the Asymptotic Safety program in Quantum Einstein Gravity. Using the continuum approach based upon the effective average action, we summarize the state of the art of the field with a particular focus on the evidence supporting the existence of the non-trivial renormalization group fixed point at the heart of the construction. As an application, the multifractal structure of the emerging space-times is discussed in detail. In particular, we compare the continuum prediction for their spectral dimension with Monte Carlo data from the Causal Dynamical Triangulation approach.Comment: 87 pages, 13 figures, review article prepared for the New Journal of Physics focus issue on Quantum Einstein Gravit

    Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data

    Full text link
    The emergence of fractal features in the microscopic structure of space-time is a common theme in many approaches to quantum gravity. In this work we carry out a detailed renormalization group study of the spectral dimension dsd_s and walk dimension dwd_w associated with the effective space-times of asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling regimes where these generalized dimensions are approximately constant for an extended range of length scales: a classical regime where ds=d,dw=2d_s = d, d_w = 2, a semi-classical regime where ds=2d/(2+d),dw=2+dd_s = 2d/(2+d), d_w = 2+d, and the UV-fixed point regime where ds=d/2,dw=4d_s = d/2, d_w = 4. On the length scales covered by three-dimensional Monte Carlo simulations, the resulting spectral dimension is shown to be in very good agreement with the data. This comparison also provides a natural explanation for the apparent puzzle between the short distance behavior of the spectral dimension reported from Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.Comment: 26 pages, 6 figure

    Approximation of General Smooth Convex Bodies

    Get PDF
    • …
    corecore