3,286 research outputs found

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Resilience and Controllability of Dynamic Collective Behaviors

    Get PDF
    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics

    Synchronization in dynamical networks of locally coupled self-propelled oscillators

    Get PDF
    Systems of mobile physical entities exchanging information with their neighborhood can be found in many different situations. The understanding of their emergent cooperative behaviour has become an important issue across disciplines, requiring a general conceptual framework in order to harvest the potential of these systems. We study the synchronization of coupled oscillators in time-evolving networks defined by the positions of self-propelled agents interacting in real space. In order to understand the impact of mobility in the synchronization process on general grounds, we introduce a simple model of self-propelled hard disks performing persistent random walks in 2dd space and carrying an internal Kuramoto phase oscillator. For non-interacting particles, self-propulsion accelerates synchronization. The competition between agent mobility and excluded volume interactions gives rise to a richer scenario, leading to an optimal self-propulsion speed. We identify two extreme dynamic regimes where synchronization can be understood from theoretical considerations. A systematic analysis of our model quantifies the departure from the latter ideal situations and characterizes the different mechanisms leading the evolution of the system. We show that the synchronization of locally coupled mobile oscillators generically proceeds through coarsening verifying dynamic scaling and sharing strong similarities with the phase ordering dynamics of the 2dd XY model following a quench. Our results shed light into the generic mechanisms leading the synchronization of mobile agents, providing a efficient way to understand more complex or specific situations involving time-dependent networks where synchronization, mobility and excluded volume are at play
    corecore