112,257 research outputs found

    A Fluid-Dynamical Subgrid Scale Model for Highly Compressible Astrophysical Turbulence

    Get PDF
    We formulate and implement the Euler equations with SGS dynamics and provide numerical tests of an SGS turbulence energy model that predicts the turbulent pressure of unresolved velocity fluctuations and the rate of dissipation for highly compressible turbulence. We test closures for the turbulence energy cascade by filtering data from high-resolution simulations of forced isothermal and adiabatic turbulence. Optimal properties and an excellent correlation are found for a linear combination of the eddy-viscosity closure that is employed in LES of weakly compressible turbulence and a term that is non-linear in the Jacobian matrix of the velocity. Using this mixed closure, the SGS turbulence energy model is validated in LES of turbulence with stochastic forcing. It is found that the SGS model satisfies several important requirements: 1. The mean SGS turbulence energy follows a power law for varying grid scale. 2. The root mean square (RMS) Mach number of the unresolved velocity fluctuations is proportional to the RMS Mach number of the resolved turbulence, independent of the forcing. 3. The rate of dissipation and the turbulence energy flux are constant. Moreover, we discuss difficulties with direct estimates of the turbulent pressure and the dissipation rate on the basis of resolved flow quantities that have recently been proposed. In combination with the energy injection by stellar feedback and other unresolved processes, the proposed SGS model is applicable to a variety of problems in computational astrophysics. Computing the SGS turbulence energy, the treatment of star formation and stellar feedback in galaxy simulations can be improved. Further, we expect that the turbulent pressure on the grid scale affects the stability of gas against gravitational collapse.Comment: 19 pages, 16 figures, submitted to A&

    Large-N expansions applied to gravitational clustering

    Get PDF
    We develop a path-integral formalism to study the formation of large-scale structures in the universe. Starting from the equations of motion of hydrodynamics (single-stream approximation) we derive the action which describes the statistical properties of the density and velocity fields for Gaussian initial conditions. Then, we present large-N expansions (associated with a generalization to N fields or with a semi-classical expansion) of the path-integral defined by this action. This provides a systematic expansion for two-point functions such as the response function and the usual two-point correlation. We present the results of two such expansions (and related variants) at one-loop order for a SCDM and a LCDM cosmology. We find that the response function exhibits fast oscillations in the non-linear regime with an amplitude which either follows the linear prediction (for the direct steepest-descent scheme) or decays (for the 2PI effective action scheme). On the other hand, the correlation function agrees with the standard one-loop result in the quasi-linear regime and remains well-behaved in the highly non-linear regime. This suggests that these large-N expansions could provide a good framework to study the dynamics of gravitational clustering in the non-linear regime. Moreover, the use of various expansion schemes allows one to estimate their range of validity without the need of N-body simulations and could provide a better accuracy in the weakly non-linear regime.Comment: 27 pages, published in A&

    Some Key Developments in Computational Electromagnetics and their Attribution

    No full text
    Key developments in computational electromagnetics are proposed. Historical highlights are summarized concentrating on the two main approaches of differential and integral methods. This is seen as timely as a retrospective analysis is needed to minimize duplication and to help settle questions of attribution
    corecore