8,500 research outputs found

    Structure and functional motifs of GCR1, the only plant protein with a GPCR fold?

    Get PDF
    Whether GPCRs exist in plants is a fundamental biological question. Interest in deorphanizing new G protein coupled receptors (GPCRs), arises because of their importance in signaling. Within plants, this is controversial as genome analysis has identified 56 putative GPCRs, including GCR1 which is reportedly a remote homologue to class A, B and E GPCRs. Of these, GCR2, is not a GPCR; more recently it has been proposed that none are, not even GCR1. We have addressed this disparity between genome analysis and biological evidence through a structural bioinformatics study, involving fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe GCR1, we have developed a novel helix alignment method, which has been benchmarked against the the class A – class B - class F GPCR alignments. In addition, we have presented a mutually consistent set of alignments of GCR1 homologues to class A, class B and class F GPCRs, and shown that GCR1 is closer to class A and /or class B GPCRs than class A, class B or class F GPCRs are to each other. To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the 6 GPCR classes. Variability comparisons provide additional evidence that GCR1 homologues have the GPCR fold. From the alignments and a GCR1 comparative model we have identified motifs that are common to GCR1, class A, B and E GPCRs. We discuss the possibilities that emerge from this controversial evidence that GCR1 has a GPCR fol

    Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks

    Full text link
    One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with such data. Herein, we propose a novel approach for learning such representations from multi-channel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.Comment: To be published as a conference paper at ICLR 201

    A Bayesian Framework for Combining Valuation Estimates

    Full text link
    Obtaining more accurate equity value estimates is the starting point for stock selection, value-based indexing in a noisy market, and beating benchmark indices through tactical style rotation. Unfortunately, discounted cash flow, method of comparables, and fundamental analysis typically yield discrepant valuation estimates. Moreover, the valuation estimates typically disagree with market price. Can one form a superior valuation estimate by averaging over the individual estimates, including market price? This article suggests a Bayesian framework for combining two or more estimates into a superior valuation estimate. The framework justifies the common practice of averaging over several estimates to arrive at a final point estimate.Comment: Citations at http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=240309 Review of Quantitative Finance and Accounting, 30.3 (2008) forthcomin

    Highly Accurate Fragment Library for Protein Fold Recognition

    Get PDF
    Proteins play a crucial role in living organisms as they perform many vital tasks in every living cell. Knowledge of protein folding has a deep impact on understanding the heterogeneity and molecular functions of proteins. Such information leads to crucial advances in drug design and disease understanding. Fold recognition is a key step in the protein structure discovery process, especially when traditional computational methods fail to yield convincing structural homologies. In this work, we present a new protein fold recognition approach using machine learning and data mining methodologies. First, we identify a protein structural fragment library (Frag-K) composed of a set of backbone fragments ranging from 4 to 20 residues as the structural “keywords” that can effectively distinguish between major protein folds. We firstly apply randomized spectral clustering and random forest algorithms to construct representative and sensitive protein fragment libraries from a large-scale of high-quality, non-homologous protein structures available in PDB. We analyze the impacts of clustering cut-offs on the performance of the fragment libraries. Then, the Frag-K fragments are employed as structural features to classify protein structures in major protein folds defined by SCOP (Structural Classification of Proteins). Our results show that a structural dictionary with ~400 4- to 20-residue Frag-K fragments is capable of classifying major SCOP folds with high accuracy. Then, based on Frag-k, we design a novel deep learning architecture, so-called DeepFrag-k, which identifies fold discriminative features to improve the accuracy of protein fold recognition. DeepFrag-k is composed of two stages: the first stage employs a multimodal Deep Belief Network (DBN) to predict the potential structural fragments given a sequence, represented as a fragment vector, and then the second stage uses a deep convolution neural network (CNN) to classify the fragment vectors into the corresponding folds. Our results show that DeepFrag-k yields 92.98% accuracy in predicting the top-100 most popular fragments, which can be used to generate discriminative fragment feature vectors to improve protein fold recognition

    A Folding Pathway-Dependent Score to Recognize Membrane Proteins

    Get PDF
    While various approaches exist to study protein localization, it is still a challenge to predict where proteins localize. Here, we consider a mechanistic viewpoint for membrane localization. Taking into account the steps for the folding pathway of α-helical membrane proteins and relating biophysical parameters to each of these steps, we create a score capable of predicting the propensity for membrane localization and call it FP3mem. This score is driven from the principal component analysis (PCA) of the biophysical parameters related to membrane localization. FP3mem allows us to rationalize the colocalization of a number of channel proteins with the Cav1.2 channel by their fewer propensities for membrane localization

    Explicit processing of verbal and spatial features during letter-location binding modulates oscillatory activity of a fronto-parietal network.

    Get PDF
    The present study investigated the binding of verbal and spatial features in immediate memory. In a recent study, we demonstrated incidental and asymmetrical letter-location binding effects when participants attended to letter features (but not when they attended to location features) that were associated with greater oscillatory activity over prefrontal and posterior regions during the retention period. We were interested to investigate whether the patterns of brain activity associated with the incidental binding of letters and locations observed when only the verbal feature is attended differ from those reflecting the binding resulting from the controlled/explicit processing of both verbal and spatial features. To achieve this, neural activity was recorded using magnetoencephalography (MEG) while participants performed two working memory tasks. Both tasks were identical in terms of their perceptual characteristics and only differed with respect to the task instructions. One of the tasks required participants to process both letters and locations. In the other, participants were instructed to memorize only the letters, regardless of their location. Time–frequency representation of MEG data based on the wavelet transform of the signals was calculated on a single trial basis during the maintenance period of both tasks. Critically, despite equivalent behavioural binding effects in both tasks, single and dual feature encoding relied on different neuroanatomical and neural oscillatory correlates. We propose that enhanced activation of an anterior–posterior dorsal network observed in the task requiring the processing of both features reflects the necessity for allocating greater resources to intentionally process verbal and spatial features in this task

    Investigating Student Understanding of Vector Calculus in Upper-Division Electricity and Magnetism: Construction and Determination of Differential Element in Non-Cartesian Coordinate Systems

    Get PDF
    Differential length, area, and volume elements appear ubiquitously over the course of upper-division electricity and magnetism (E&M), used to sum the effects of or determine expressions for electric or magnetic fields. Given the plethora of tasks with spherical and cylindrical symmetry, non-Cartesian coordinates are commonly used, which include scaling factors as coefficients for the differential terms to account for the curvature of space. Furthermore, the application to vector fields means differential lengths and areas are vector quantities. So far, little of the education research in E&M has explored student understanding and construction of the non-Cartesian differential elements used in applications of vector calculus. This study contributes to the research base on the learning and teaching of these quantities. Following course observations of junior-level E&M, targeted investigations were conducted to categorize student understanding of the properties of these differentials as they are constructed in a coordinate system without a physics context and as they are determined within common physics tasks. In general, students did not have a strong understanding of the geometry of non-Cartesian coordinate systems. However, students who were able to construct differential area and volume elements as a product of differential lengths within a given coordinate system were more successful when applying vector calculus. The results of this study were used to develop preliminary instructional resources to aid in the teaching of this material. Lastly, this dissertation presents a theoretical model developed within the context of this study to describe students’ construction and interpretation of equations. The model joins existing theoretical frameworks: symbolic forms, used to describe students’ representational understanding of the structure of the constructed equation; and conceptual blending, which has been used to describe the ways in which students combine mathematics and physics knowledge when problem solving. In addition to providing a coherent picture for how the students in this study connect contextual information to symbolic representations, this model is broadly applicable as an analytical lens and allows for a detailed reinterpretation of similar analyses using these frameworks
    • …
    corecore