397 research outputs found

    About randomised distributed graph colouring and graph partition algorithms

    Get PDF
    AbstractWe present and analyse a very simple randomised distributed vertex colouring algorithm for arbitrary graphs of size n that halts in time O(logn) with probability 1-o(n-1). Each message containing 1 bit, its bit complexity per channel is O(logn).From this algorithm, we deduce and analyse a randomised distributed vertex colouring algorithm for arbitrary graphs of maximum degree Δ and size n that uses at most Δ+1 colours and halts in time O(logn) with probability 1-o(n-1).We also obtain a partition algorithm for arbitrary graphs of size n that builds a spanning forest in time O(logn) with probability 1-o(n-1). We study some parameters such as the number, the size and the radius of trees of the spanning forest

    Local algorithms in (weakly) coloured graphs

    Full text link
    A local algorithm is a distributed algorithm that completes after a constant number of synchronous communication rounds. We present local approximation algorithms for the minimum dominating set problem and the maximum matching problem in 2-coloured and weakly 2-coloured graphs. In a weakly 2-coloured graph, both problems admit a local algorithm with the approximation factor (Δ+1)/2(\Delta+1)/2, where Δ\Delta is the maximum degree of the graph. We also give a matching lower bound proving that there is no local algorithm with a better approximation factor for either of these problems. Furthermore, we show that the stronger assumption of a 2-colouring does not help in the case of the dominating set problem, but there is a local approximation scheme for the maximum matching problem in 2-coloured graphs.Comment: 14 pages, 3 figure

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n1−2/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Towards a complexity theory for the congested clique

    Full text link
    The congested clique model of distributed computing has been receiving attention as a model for densely connected distributed systems. While there has been significant progress on the side of upper bounds, we have very little in terms of lower bounds for the congested clique; indeed, it is now know that proving explicit congested clique lower bounds is as difficult as proving circuit lower bounds. In this work, we use various more traditional complexity-theoretic tools to build a clearer picture of the complexity landscape of the congested clique: -- Nondeterminism and beyond: We introduce the nondeterministic congested clique model (analogous to NP) and show that there is a natural canonical problem family that captures all problems solvable in constant time with nondeterministic algorithms. We further generalise these notions by introducing the constant-round decision hierarchy (analogous to the polynomial hierarchy). -- Non-constructive lower bounds: We lift the prior non-uniform counting arguments to a general technique for proving non-constructive uniform lower bounds for the congested clique. In particular, we prove a time hierarchy theorem for the congested clique, showing that there are decision problems of essentially all complexities, both in the deterministic and nondeterministic settings. -- Fine-grained complexity: We map out relationships between various natural problems in the congested clique model, arguing that a reduction-based complexity theory currently gives us a fairly good picture of the complexity landscape of the congested clique

    Negative association in uniform forests and connected graphs

    Full text link
    We consider three probability measures on subsets of edges of a given finite graph GG, namely those which govern, respectively, a uniform forest, a uniform spanning tree, and a uniform connected subgraph. A conjecture concerning the negative association of two edges is reviewed for a uniform forest, and a related conjecture is posed for a uniform connected subgraph. The former conjecture is verified numerically for all graphs GG having eight or fewer vertices, or having nine vertices and no more than eighteen edges, using a certain computer algorithm which is summarised in this paper. Negative association is known already to be valid for a uniform spanning tree. The three cases of uniform forest, uniform spanning tree, and uniform connected subgraph are special cases of a more general conjecture arising from the random-cluster model of statistical mechanics.Comment: With minor correction
    • …
    corecore