4,192 research outputs found

    Painleve versus Fuchs

    Full text link
    The sigma form of the Painlev{\'e} VI equation contains four arbitrary parameters and generically the solutions can be said to be genuinely ``nonlinear'' because they do not satisfy linear differential equations of finite order. However, when there are certain restrictions on the four parameters there exist one parameter families of solutions which do satisfy (Fuchsian) differential equations of finite order. We here study this phenomena of Fuchsian solutions to the Painlev{\'e} equation with a focus on the particular PVI equation which is satisfied by the diagonal correlation function C(N,N) of the Ising model. We obtain Fuchsian equations of order N+1N+1 for C(N,N) and show that the equation for C(N,N) is equivalent to the NthN^{th} symmetric power of the equation for the elliptic integral EE. We show that these Fuchsian equations correspond to rational algebraic curves with an additional Riccati structure and we show that the Malmquist Hamiltonian p,qp,q variables are rational functions in complete elliptic integrals. Fuchsian equations for off diagonal correlations C(N,M)C(N,M) are given which extend our considerations to discrete generalizations of Painlev{\'e}.Comment: 18 pages, Dedicated to the centenary of the publication of the Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    A numerical comparison of solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems

    Full text link
    In this paper, we discuss numerical methods for solving large-scale continuous-time algebraic Riccati equations. These methods have been the focus of intensive research in recent years, and significant progress has been made in both the theoretical understanding and efficient implementation of various competing algorithms. There are several goals of this manuscript: first, to gather in one place an overview of different approaches for solving large-scale Riccati equations, and to point to the recent advances in each of them. Second, to analyze and compare the main computational ingredients of these algorithms, to detect their strong points and their potential bottlenecks. And finally, to compare the effective implementations of all methods on a set of relevant benchmark examples, giving an indication of their relative performance
    corecore