68,601 research outputs found

    Identification and control of dynamic systems using neural networks.

    Get PDF
    The aim of this thesis is to contribute in solving problems related to the on-line identification and control of unknown dynamic systems using feedforward neural networks. In this sense, this thesis presents new on-line learning algorithms for feedforward neural networks based upon the theory of variable structure system design, along with mathematical proofs regarding the convergence of solutions given by the algorithms; the boundedness of these solutions; and robustness features of the algorithms with respect to external perturbations affecting the neural networks' signals. In the thesis, the problems of on-line identification of the forward transfer operator, and the inverse transfer operator of unknown dynamic systems are also analysed, and neural networks-based identification schemes are proposed. These identification schemes are tested by computer simulations on linear and nonlinear unknown plants using both continuous-time and discrete-time versions of the proposed learning algorithms. The thesis reports about the direct inverse dynamics control problems using neural networks, and contributes towards solving these problems by proposing a direct inverse dynamics neural network-based control scheme with on-line learning capabilities of the inverse dynamics of the plant, and the addition of a feedback path that enables the resulting control scheme to exhibit robustness characteristics with respect to external disturbances affecting the output of the system. Computer simulation results on the performance of the mentioned control scheme in controlling linear and nonlinear plants are also included. The thesis also formulates a neural network-based internal model control scheme with on-line estimation capabilities of the forward transfer operator and the inverse transfer operator of unknown dynamic systems. The performance of this internal model control scheme is tested by computer simulations using a stable open-loop unknown plant with output signal corrupted by white noise. Finally, the thesis proposes a neural network-based adaptive control scheme where identification and control are simultaneously carried out

    Investigation of Air Transportation Technology at Princeton University, 1989-1990

    Get PDF
    The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given

    Modelling the robustness properties of HVAC plant under feedback control

    Get PDF
    Most existing building simulation programs fail to capture sufficient of the underlying dynamics of nonlinear HVAC plant and some have restricted room space modelling capabilities for low-time-horizon analyses. In this work, a simplified model of a room space with hot water heating and a chilled ceiling system is developed for the main purpose of analysing control system response. The room model is based on a new approach to lumped capacitance modelling and the heating and chilled ceiling emitters are modelled using third-order descriptions. Control system components are treated in detail and both controllers are ‘tuned’ at a nominal region of plant operation using a gradient-descent-based optimization procedure. Robustness qualities of the controllers are analysed with reference to extremes in plant operating conditions. A key feature of the work is the transparency of the modelling procedure, designed to have appeal to researchers as well as practitioners involved with HVAC control system design problems

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Optimal PMU Placement for Power System Dynamic State Estimation by Using Empirical Observability Gramian

    Get PDF
    In this paper the empirical observability Gramian calculated around the operating region of a power system is used to quantify the degree of observability of the system states under specific phasor measurement unit (PMU) placement. An optimal PMU placement method for power system dynamic state estimation is further formulated as an optimization problem which maximizes the determinant of the empirical observability Gramian and is efficiently solved by the NOMAD solver, which implements the Mesh Adaptive Direct Search (MADS) algorithm. The implementation, validation, and also the robustness to load fluctuations and contingencies of the proposed method are carefully discussed. The proposed method is tested on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system by performing dynamic state estimation with square-root unscented Kalman filter. The simulation results show that the determined optimal PMU placements by the proposed method can guarantee good observability of the system states, which further leads to smaller estimation errors and larger number of convergent states for dynamic state estimation compared with random PMU placements. Under optimal PMU placements an obvious observability transition can be observed. The proposed method is also validated to be very robust to both load fluctuations and contingencies.Comment: Accepted by IEEE Transactions on Power System

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    On output feedback nonlinear model predictive control using high gain observers for a class of systems

    Get PDF
    In recent years, nonlinear model predictive control schemes have been derived that guarantee stability of the closed loop under the assumption of full state information. However, only limited advances have been made with respect to output feedback in connection to nonlinear predictive control. Most of the existing approaches for output feedback nonlinear model predictive control do only guarantee local stability. Here we consider the combination of stabilizing instantaneous NMPC schemes with high gain observers. For a special MIMO system class we show that the closed loop is asymptotically stable, and that the output feedback NMPC scheme recovers the performance of the state feedback in the sense that the region of attraction and the trajectories of the state feedback scheme are recovered for a high gain observer with large enough gain and thus leading to semi-global/non-local results
    corecore