843 research outputs found

    An ensemble of rejecting classifiers for anomaly detection of audio events

    Get PDF
    Audio analytic systems are receiving an increasing interest in the scientific community, not only as stand alone systems for the automatic detection of abnormal events by the interpretation of the audio track, but also in conjunction with video analytics tools for enforcing the evidence of anomaly detection. In this paper we present an automatic recognizer of a set of abnormal audio events that works by extracting suitable features from the signals obtained by microphones installed into a surveilled area, and by classifying them using two classifiers that operate at different time resolutions. An original aspect of the proposed system is the estimation of the reliability of each response of the individual classifiers. In this way, each classifier is able to reject the samples having an overall reliability below a threshold. This approach allows our system to combine only reliable decisions, so increasing the overall performance of the method. The system has been tested on a large dataset of samples acquired from real world scenarios; the audio classes of interests are represented by gunshot, scream and glass breaking in addition to the background sounds. The preliminary results obtained encourage further research in this direction

    ConvGRU-CNN: Spatiotemporal Deep Learning for Real-World Anomaly Detection in Video Surveillance System

    Get PDF
    Video surveillance for real-world anomaly detection and prevention using deep learning is an important and difficult research area. It is imperative to detect and prevent anomalies to develop a nonviolent society. Realworld video surveillance cameras automate the detection of anomaly activities and enable the law enforcement systems for taking steps toward public safety. However, a human-monitored surveillance system is vulnerable to oversight anomaly activity. In this paper, an automated deep learning model is proposed in order to detect and prevent anomaly activities. The real-world video surveillance system is designed by implementing the ResNet-50, a Convolutional Neural Network (CNN) model, to extract the high-level features from input streams whereas temporal features are extracted by the Convolutional GRU (ConvGRU) from the ResNet-50 extracted features in the time-series dataset. The proposed deep learning video surveillance model (named ConvGRUCNN) can efficiently detect anomaly activities. The UCF-Crime dataset is used to evaluate the proposed deep learning model. We classified normal and abnormal activities, thereby showing the ability of ConvGRU-CNN to find a correct category for each abnormal activity. With the UCF-Crime dataset for the video surveillance-based anomaly detection, ConvGRU-CNN achieved 82.22% accuracy. In addition, the proposed model outperformed the related deep learning models

    Anomaly detection for environmental noise monitoring

    Get PDF
    Octave-band sound pressure level is the preferred measure for continuous environmental noise monitoring over raw audio because accepted standards and devices exist, these data do not compromise voice privacy, and thus an octave-band sound meter can legally collect data in public. By setting up an experiment that continuously monitors octave-band sound pressure level in a residential street, we show daily noise-level patterns correlated to human activities. Directly applying well-known anomaly detection algorithms including one-class support vector machine, replicator neural network, and principal component analysis based anomaly detection shows low performance in the collected data because these standard algorithms are unable to exploit the daily patterns. Therefore, principal component analysis anomaly detection with time-varying mean and the covariance matrix over each hour, is proposed in order to detect abnormal acoustic events in the octave band measurements of the residential-noise-monitoring application. The proposed method performs at 0.83 in recall, 0.88 in precision and 0.85 in F-measure on the evaluation data set.Ope

    Anomaly detection for environmental noise monitoring

    Get PDF
    Octave-band sound pressure level is the preferred measure for continuous environmental noise monitoring over raw audio because accepted standards and devices exist, these data do not compromise voice privacy, and thus an octave-band sound meter can legally collect data in public. By setting up an experiment that continuously monitors octave-band sound pressure level in a residential street, we show daily noise-level patterns correlated to human activities. Directly applying well-known anomaly detection algorithms including one-class support vector machine, replicator neural network, and principal component analysis based anomaly detection shows low performance in the collected data because these standard algorithms are unable to exploit the daily patterns. Therefore, principal component analysis anomaly detection with time-varying mean and the covariance matrix over each hour, is proposed in order to detect abnormal acoustic events in the octave band measurements of the residential-noise-monitoring application. The proposed method performs at 0.83 in recall, 0.88 in precision and 0.85 in F-measure on the evaluation data set.Ope

    Robust Unsupervised Speaker Segmentation for Audio Diarization

    Get PDF
    Audio diarization is the process of partitioning an input audio stream into homogeneous regions according to their specific audio sources. These sources can include audio type (speech, music, background noise, ect.), speaker identity and channel characteristics. With the continually increasing number of larges volumes of spoken documents including broadcasts, voice mails, meetings and telephone conversations, diarization has received a great deal of interest in recent years which significantly impacts performances of automatic speech recognition and audio indexing systems. A subtype of audio diarization, where the speech segments of the signal are broken into different speakers, is speaker diarization. It generally answers to the question "Who spoke when?" and it is divided in two modules: speaker segmentation and speaker clustering. This chapter discusses the problem of automatically detecting speaker change points presented in a given audio stream, without prior acoustic information on the speakers. We introduce a new unsupervised speaker segmentation technique based on One Class Support Vector Machines (1-SVMs) robust to different acoustic conditions. We evaluated the robustness improvements of this method by segmenting different types of audio stream (broadcast news, meetings and telephone conversations) and comparing the results with model selection segmentation techniques based on the Bayesian information criterion (BIC)

    Unusual event detection in real-world surveillance applications

    Get PDF
    Given the near-ubiquity of CCTV, there is significant ongoing research effort to apply image and video analysis methods together with machine learning techniques towards autonomous analysis of such data sources. However, traditional approaches to scene understanding remain dependent on training based on human annotations that need to be provided for every camera sensor. In this thesis, we propose an unusual event detection and classification approach which is applicable to real-world visual monitoring applications. The goal is to infer the usual behaviours in the scene and to judge the normality of the scene on the basis on the model created. The first requirement for the system is that it should not demand annotated data to train the system. Annotation of the data is a laborious task, and it is not feasible in practice to annotate video data for each camera as an initial stage of event detection. Furthermore, even obtaining training examples for the unusual event class is challenging due to the rarity of such events in video data. Another requirement for the system is online generation of results. In surveillance applications, it is essential to generate real-time results to allow a swift response by a security operator to prevent harmful consequences of unusual and antisocial events. The online learning capabilities also mean that the model can be continuously updated to accommodate natural changes in the environment. The third requirement for the system is the ability to run the process indefinitely. The mentioned requirements are necessary for real-world surveillance applications and the approaches that conform to these requirements need to be investigated. This thesis investigates unusual event detection methods that conform with real-world requirements and investigates the issue through theoretical and experimental study of machine learning and computer vision algorithms
    corecore