681 research outputs found

    In-Network Volumetric DDoS Victim Identification Using Programmable Commodity Switches

    Full text link
    Volumetric distributed Denial-of-Service (DDoS) attacks have become one of the most significant threats to modern telecommunication networks. However, most existing defense systems require that detection software operates from a centralized monitoring collector, leading to increased traffic load and delayed response. The recent advent of Data Plane Programmability (DPP) enables an alternative solution: threshold-based volumetric DDoS detection can be performed directly in programmable switches to skim only potentially hazardous traffic, to be analyzed in depth at the controller. In this paper, we first introduce the BACON data structure based on sketches, to estimate per-destination flow cardinality, and theoretically analyze it. Then we employ it in a simple in-network DDoS victim identification strategy, INDDoS, to detect the destination IPs for which the number of incoming connections exceeds a pre-defined threshold. We describe its hardware implementation on a Tofino-based programmable switch using the domain-specific P4 language, proving that some limitations imposed by real hardware to safeguard processing speed can be overcome to implement relatively complex packet manipulations. Finally, we present some experimental performance measurements, showing that our programmable switch is able to keep processing packets at line-rate while performing volumetric DDoS detection, and also achieves a high F1 score on DDoS victim identification.Comment: Accepted by IEEE Transactions on Network and Service Management Special issue on Latest Developments for Security Management of Networks and Service

    DRUM-II : efficient model based diagnosis of technical systems

    Get PDF
    [no abstract

    Innovative Technologies and Services for Smart Cities

    Get PDF
    A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries

    Neuromorphic Learning Systems for Supervised and Unsupervised Applications

    Get PDF
    The advancements in high performance computing (HPC) have enabled the large-scale implementation of neuromorphic learning models and pushed the research on computational intelligence into a new era. Those bio-inspired models are constructed on top of unified building blocks, i.e. neurons, and have revealed potentials for learning of complex information. Two major challenges remain in neuromorphic computing. Firstly, sophisticated structuring methods are needed to determine the connectivity of the neurons in order to model various problems accurately. Secondly, the models need to adapt to non-traditional architectures for improved computation speed and energy efficiency. In this thesis, we address these two problems and apply our techniques to different cognitive applications. This thesis first presents the self-structured confabulation network for anomaly detection. Among the machine learning applications, unsupervised detection of the anomalous streams is especially challenging because it requires both detection accuracy and real-time performance. Designing a computing framework that harnesses the growing computing power of the multicore systems while maintaining high sensitivity and specificity to the anomalies is an urgent research need. We present AnRAD (Anomaly Recognition And Detection), a bio-inspired detection framework that performs probabilistic inferences. We leverage the mutual information between the features and develop a self-structuring procedure that learns a succinct confabulation network from the unlabeled data. This network is capable of fast incremental learning, which continuously refines the knowledge base from the data streams. Compared to several existing anomaly detection methods, the proposed approach provides competitive detection accuracy as well as the insight to reason the decision making. Furthermore, we exploit the massive parallel structure of the AnRAD framework. Our implementation of the recall algorithms on the graphic processing unit (GPU) and the Xeon Phi co-processor both obtain substantial speedups over the sequential implementation on general-purpose microprocessor (GPP). The implementation enables real-time service to concurrent data streams with diversified contexts, and can be applied to large problems with multiple local patterns. Experimental results demonstrate high computing performance and memory efficiency. For vehicle abnormal behavior detection, the framework is able to monitor up to 16000 vehicles and their interactions in real-time with a single commodity co-processor, and uses less than 0.2ms for each testing subject. While adapting our streaming anomaly detection model to mobile devices or unmanned systems, the key challenge is to deliver required performance under the stringent power constraint. To address the paradox between performance and power consumption, brain-inspired hardware, such as the IBM Neurosynaptic System, has been developed to enable low power implementation of neural models. As a follow-up to the AnRAD framework, we proposed to port the detection network to the TrueNorth architecture. Implementing inference based anomaly detection on a neurosynaptic processor is not straightforward due to hardware limitations. A design flow and the supporting component library are developed to flexibly map the learned detection networks to the neurosynaptic cores. Instead of the popular rate code, burst code is adopted in the design, which represents numerical value using the phase of a burst of spike trains. This does not only reduce the hardware complexity, but also increases the result\u27s accuracy. A Corelet library, NeoInfer-TN, is implemented for basic operations in burst code and two-phase pipelines are constructed based on the library components. The design can be configured for different tradeoffs between detection accuracy, hardware resource consumptions, throughput and energy. We evaluate the system using network intrusion detection data streams. The results show higher detection rate than some conventional approaches and real-time performance, with only 50mW power consumption. Overall, it achieves 10^8 operations per Joule. In addition to the modeling and implementation of unsupervised anomaly detection, we also investigate a supervised learning model based on neural networks and deep fragment embedding and apply it to text-image retrieval. The study aims at bridging the gap between image and natural language. It continues to improve the bidirectional retrieval performance across the modalities. Unlike existing works that target at single sentence densely describing the image objects, we elevate the topic to associating deep image representations with noisy texts that are only loosely correlated. Based on text-image fragment embedding, our model employs a sequential configuration, connects two embedding stages together. The first stage learns the relevancy of the text fragments, and the second stage uses the filtered output from the first one to improve the matching results. The model also integrates multiple convolutional neural networks (CNN) to construct the image fragments, in which rich context information such as human faces can be extracted to increase the alignment accuracy. The proposed method is evaluated with both synthetic dataset and real-world dataset collected from picture news website. The results show up to 50% ranking performance improvement over the comparison models

    Constraint solving over multi-valued logics - application to digital circuits

    Get PDF
    Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Optics and virtualization as data center network infrastructure

    Get PDF
    The emerging cloud services have motivated a fresh look at the design of data center network infrastructure in multiple layers. To transfer the huge amount of data generated by many data intensive applications, data center network has to be fast, scalable and power efficient. To support flexible and efficient sharing in cloud services, service providers deploy a virtualization layer as part of the data center infrastructure. This thesis explores the design and performance analysis of data center network infrastructure in both physical network and virtualization layer. On the physical network design front, we present a hybrid packet/circuit switched network architecture which uses circuit switched optics to augment traditional packet-switched Ethernet in modern data centers. We show that this technique has substantial potential to improve bisection bandwidth and application performance in a cost-effective manner. To push the adoption of optical circuits in real cloud data centers, we further explore and address the circuit control issues in shared data center environments. On the virtualization layer, we present an analytical study on the network performance of virtualized data centers. Using Amazon EC2 as an experiment platform, we quantify the impact of virtualization on network performance in commercial cloud. Our findings provide valuable insights to both cloud users in moving legacy application into cloud and service providers in improving the virtualization infrastructure to support better cloud services

    Autonomous Database Management at Scale: Automated Tuning, Performance Diagnosis, and Resource Decentralization

    Full text link
    Database administration has always been a challenging task, and is becoming even more difficult with the rise of public and private clouds. Today, many enterprises outsource their database operation to cloud service providers (CSPs) in order to reduce operating costs. CSPs, now tasked with managing an extremely large number of database instances, cannot simply rely on database administrators. In fact, humans have become a bottleneck in the scalability and profitability of cloud offerings. This has created a massive demand for building autonomous databases—systems that operate with little or zero human supervision. While autonomous databases have gained much attention in recent years in both academia and industry, many of the existing techniques remain limited to automating parameter tuning, backup/recovery, and monitoring. Consequently, there is much to be done before realizing a fully autonomous database. This dissertation examines and offers new automation techniques for three specific areas of modern database management. 1. Automated Tuning – We propose a new generation of physical database designers that are robust against uncertainty in future workloads. Given the rising popularity of approximate databases, we also develop an optimal, hybrid sampling strategy that enables efficient join processing on offline samples, a long-standing open problem in approximate query processing. 2. Performance Diagnosis – We design practical tools and algorithms for assisting database administrators in quickly and reliably diagnosing performance problems in their transactional databases. 3. Resource Decentralization – To achieve autonomy among database components in a shared environment, we propose a highly efficient, starvation-free, and fully decentralized distributed lock manager for distributed database clusters.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153349/1/dyoon_1.pd

    Modelling of reliable service based operations support system (MORSBOSS)

    Get PDF
    Philosophiae Doctor - PhDThe underlying theme of this thesis is identification, classification, detection and prediction of cellular network faults using state of the art technologies, methods and algorithms

    Enhancing Computer Network Security through Improved Outlier Detection for Data Streams

    Get PDF
    V několika posledních letech se metody strojového učení (zvláště ty zabývající se detekcí odlehlých hodnot - OD) v oblasti kyberbezpečnosti opíraly o zjišťování anomálií síťového provozu spočívajících v nových schématech útoků. Detekce anomálií v počítačových sítích reálného světa se ale stala stále obtížnější kvůli trvalému nárůstu vysoce objemných, rychlých a dimenzionálních průběžně přicházejících dat (SD), pro která nejsou k dispozici obecně uznané a pravdivé informace o anomalitě. Účinná detekční schémata pro vestavěná síťová zařízení musejí být rychlá a paměťově nenáročná a musejí být schopna se potýkat se změnami konceptu, když se vyskytnou. Cílem této disertace je zlepšit bezpečnost počítačových sítí zesílenou detekcí odlehlých hodnot v datových proudech, obzvláště SD, a dosáhnout kyberodolnosti, která zahrnuje jak detekci a analýzu, tak reakci na bezpečnostní incidenty jako jsou např. nové zlovolné aktivity. Za tímto účelem jsou v práci navrženy čtyři hlavní příspěvky, jež byly publikovány nebo se nacházejí v recenzním řízení časopisů. Zaprvé, mezera ve volbě vlastností (FS) bez učitele pro zlepšování již hotových metod OD v datových tocích byla zaplněna navržením volby vlastností bez učitele pro detekci odlehlých průběžně přicházejících dat označované jako UFSSOD. Následně odvozujeme generický koncept, který ukazuje dva aplikační scénáře UFSSOD ve spojení s online algoritmy OD. Rozsáhlé experimenty ukázaly, že UFSSOD coby algoritmus schopný online zpracování vykazuje srovnatelné výsledky jako konkurenční metoda upravená pro OD. Zadruhé představujeme nový aplikační rámec nazvaný izolovaný les založený na počítání výkonu (PCB-iForest), jenž je obecně schopen využít jakoukoliv online OD metodu založenou na množinách dat tak, aby fungovala na SD. Do tohoto algoritmu integrujeme dvě varianty založené na klasickém izolovaném lese. Rozsáhlé experimenty provedené na 23 multidisciplinárních datových sadách týkajících se bezpečnostní problematiky reálného světa ukázaly, že PCB-iForest jasně překonává už zavedené konkurenční metody v 61 % případů a dokonce dosahuje ještě slibnějších výsledků co do vyváženosti mezi výpočetními náklady na klasifikaci a její úspěšností. Zatřetí zavádíme nový pracovní rámec nazvaný detekce odlehlých hodnot a rozpoznávání schémat útoku proudovým způsobem (SOAAPR), jenž je na rozdíl od současných metod schopen zpracovat výstup z různých online OD metod bez učitele proudovým způsobem, aby získal informace o nových schématech útoku. Ze seshlukované množiny korelovaných poplachů jsou metodou SOAAPR vypočítány tři různé soukromí zachovávající podpisy podobné otiskům prstů, které charakterizují a reprezentují potenciální scénáře útoku s ohledem na jejich komunikační vztahy, projevy ve vlastnostech dat a chování v čase. Evaluace na dvou oblíbených datových sadách odhalila, že SOAAPR může soupeřit s konkurenční offline metodou ve schopnosti korelace poplachů a významně ji překonává z hlediska výpočetního času . Navíc se všechny tři typy podpisů ve většině případů zdají spolehlivě charakterizovat scénáře útoků tím, že podobné seskupují k sobě. Začtvrté představujeme algoritmus nepárového kódu autentizace zpráv (Uncoupled MAC), který propojuje oblasti kryptografického zabezpečení a detekce vniknutí (IDS) pro síťovou bezpečnost. Zabezpečuje síťovou komunikaci (autenticitu a integritu) kryptografickým schématem s podporou druhé vrstvy kódy autentizace zpráv, ale také jako vedlejší efekt poskytuje funkcionalitu IDS tak, že vyvolává poplach na základě porušení hodnot nepárového MACu. Díky novému samoregulačnímu rozšíření algoritmus adaptuje svoje vzorkovací parametry na základě zjištění škodlivých aktivit. Evaluace ve virtuálním prostředí jasně ukazuje, že schopnost detekce se za běhu zvyšuje pro různé scénáře útoku. Ty zahrnují dokonce i situace, kdy se inteligentní útočníci snaží využít slabá místa vzorkování.ObhájenoOver the past couple of years, machine learning methods - especially the Outlier Detection (OD) ones - have become anchored to the cyber security field to detect network-based anomalies rooted in novel attack patterns. Due to the steady increase of high-volume, high-speed and high-dimensional Streaming Data (SD), for which ground truth information is not available, detecting anomalies in real-world computer networks has become a more and more challenging task. Efficient detection schemes applied to networked, embedded devices need to be fast and memory-constrained, and must be capable of dealing with concept drifts when they occur. The aim of this thesis is to enhance computer network security through improved OD for data streams, in particular SD, to achieve cyber resilience, which ranges from the detection, over the analysis of security-relevant incidents, e.g., novel malicious activity, to the reaction to them. Therefore, four major contributions are proposed, which have been published or are submitted journal articles. First, a research gap in unsupervised Feature Selection (FS) for the improvement of off-the-shell OD methods in data streams is filled by proposing Unsupervised Feature Selection for Streaming Outlier Detection, denoted as UFSSOD. A generic concept is retrieved that shows two application scenarios of UFSSOD in conjunction with online OD algorithms. Extensive experiments have shown that UFSSOD, as an online-capable algorithm, achieves comparable results with a competitor trimmed for OD. Second, a novel unsupervised online OD framework called Performance Counter-Based iForest (PCB-iForest) is being introduced, which generalized, is able to incorporate any ensemble-based online OD method to function on SD. Two variants based on classic iForest are integrated. Extensive experiments, performed on 23 different multi-disciplinary and security-related real-world data sets, revealed that PCB-iForest clearly outperformed state-of-the-art competitors in 61 % of cases and even achieved more promising results in terms of the tradeoff between classification and computational costs. Third, a framework called Streaming Outlier Analysis and Attack Pattern Recognition, denoted as SOAAPR is being introduced that, in contrast to the state-of-the-art, is able to process the output of various online unsupervised OD methods in a streaming fashion to extract information about novel attack patterns. Three different privacy-preserving, fingerprint-like signatures are computed from the clustered set of correlated alerts by SOAAPR, which characterize and represent the potential attack scenarios with respect to their communication relations, their manifestation in the data's features and their temporal behavior. The evaluation on two popular data sets shows that SOAAPR can compete with an offline competitor in terms of alert correlation and outperforms it significantly in terms of processing time. Moreover, in most cases all three types of signatures seem to reliably characterize attack scenarios to the effect that similar ones are grouped together. Fourth, an Uncoupled Message Authentication Code algorithm - Uncoupled MAC - is presented which builds a bridge between cryptographic protection and Intrusion Detection Systems (IDSs) for network security. It secures network communication (authenticity and integrity) through a cryptographic scheme with layer-2 support via uncoupled message authentication codes but, as a side effect, also provides IDS-functionality producing alarms based on the violation of Uncoupled MAC values. Through a novel self-regulation extension, the algorithm adapts its sampling parameters based on the detection of malicious actions on SD. The evaluation in a virtualized environment clearly shows that the detection rate increases over runtime for different attack scenarios. Those even cover scenarios in which intelligent attackers try to exploit the downsides of sampling
    corecore