56,019 research outputs found

    Spatio-Temporal Information for Action Recognition in Thermal Video Using Deep Learning Model

    Get PDF
    Researchers can evaluate numerous information to ensure automated monitoring due to the widespread use of surveillance cameras in smart cities. For the monitoring of violence or abnormal behaviors in smart cities, schools, hospitals, residences, and other observational domains, an enhanced safety and security system is required to prevent any injuries that might result in ecological, economic and social losses. Automatic detection for prompt actions is vital and may help the respective departments effectively. Based on thermal imaging, several researchers have concentrated on object detection, tracking, and action identification. Few studies have simultaneously extracted spatial-temporal information from a thermal image and utilized it to recognize human actions. This research provides a novelty based on frame-level and spatial and temporal features which combines richer context temporal information to address the issue of poor efficiency and less accuracy in detecting abnormal/violent behavior in thermal monitoring devices. The model can locate (bounded box) video frame areas involving different human activities and recognize (classify) the actions. The dataset on human behavior includes videos captured with infrared cameras in both indoor and outdoor environments. The experimental results using the publicly available benchmark datasets reveal the proposed model\u27s efficiency. Our model achieves 98.5% and 94.85% accuracy on IITR Infrared Action Recognition (IITR-IAR) and Thermal Simulated Fall (TSF) datasets, respectively. In addition, the proposed method may be evaluated in more realistic conditions, such as zooming in and out etc

    Abnormal Event Detection in Videos using Spatiotemporal Autoencoder

    Full text link
    We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps

    Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation

    Get PDF
    Small sample dataset and two-dimensional (2D) approach are challenges to vision-based abnormal gait behaviour recognition (AGBR). The lack of three-dimensional (3D) structure of the human body causes 2D based methods to be limited in abnormal gait virtual sample generation (VSG). In this paper, 3D AGBR based on VSG and multi-set canonical correlation analysis (3D-AGRBMCCA) is proposed. First, the unstructured point cloud data of gait are obtained by using a structured light sensor. A 3D parametric body model is then deformed to fit the point cloud data, both in shape and posture. The features of point cloud data are then converted to a high-level structured representation of the body. The parametric body model is used for VSG based on the estimated body pose and shape data. Symmetry virtual samples, pose-perturbation virtual samples and various body-shape virtual samples with multi-views are generated to extend the training samples. The spatial-temporal features of the abnormal gait behaviour from different views, body pose and shape parameters are then extracted by convolutional neural network based Long Short-Term Memory model network. These are projected onto a uniform pattern space using deep learning based multi-set canonical correlation analysis. Experiments on four publicly available datasets show the proposed system performs well under various conditions

    Use Cases for Abnormal Behaviour Detection in Smart Homes

    Get PDF
    While people have many ideas about how a smart home should react to particular behaviours from their inhabitant, there seems to have been relatively little attempt to organise this systematically. In this paper, we attempt to rectify this in consideration of context awareness and novelty detection for a smart home that monitors its inhabitant for illness and unexpected behaviour. We do this through the concept of the Use Case, which is used in software engineering to specify the behaviour of a system. We describe a set of scenarios and the possible outputs that the smart home could give and introduce the SHMUC Repository of Smart Home Use Cases. Based on this, we can consider how probabilistic and logic-based reasoning systems would produce different capabilities
    • …
    corecore