50,634 research outputs found

    Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi

    Get PDF
    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-016-3673-7) contains supplementary material, which is available to authorized users

    Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Get PDF
    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients

    Abiotic Stress in Plants

    Get PDF

    Additional insights into the adaptation of cotton plants under abiotic stresses by in silico analysis of conserved miRNAs in cotton expressed sequence tag database (dbEST)

    Get PDF
    Abiotic stress is the primary cause of crop losses worldwide. In addition to protein coding genes, microRNAs (miRNAs) have emerged as important players in plant stress responses. Though miRNAs are key in regulating many aspects of plant developmental plasticity under abiotic stresses, very few information are available in cotton. Hence, this study was conducted to identify the phylogenetically conserved miRNAs in cotton, using computational approaches. In this paper, we reported a set of miRNAs such as miR159, miR165, miR170, miR319, miR529, miR828, miR869, miR1030, miR1884, and miR2118 that are likely to be involved in abiotic stress response. Although, few of them have been described in literature for their specific role in fiber development, literature survey have shown that they may also be involved in abiotic stress response. Interestingly, miRNAs reported in this study were found to have several targets that are involved in abiotic stress resistance. Considering all together, it was concluded that these newly identified conserved microRNAs in cotton have great potential in future efforts to improve abiotic stress tolerance in cotton.Key words: miRNA, cotton, abiotic stress resistance, in silico analysis

    Citric Acid-Mediated Abiotic Stress Tolerance in Plants

    Get PDF
    Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA's involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA's position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed

    Sequence similarity based identification of abiotic stress responsive genes in chickpea

    Get PDF
    Chickpea (Cicer arietinum L.) is an important food legume crop, particularly for the arid regions including Indian subcontinent. Considering the detrimental effect of drought, temperature and salt stress on crop yield, efforts have been initiated in the direction of developing improved varieties and designing alternate strategies to sustain chickpea production in adverse environmental conditions. Identification of genes that confer abiotic stress tolerance in plants remains a challenge in contemporary plant breeding. The present study focused on the identification of abiotic stress responsive genes in chickpea based on sequence similarity approach exploiting known abiotic stress responsive genes from model crops or other plant species. Ten abiotic stress responsive genes identified in other plants were partially amplified from eight chickpea genotypes and their presence in chickpea was confirmed after sequencing the PCR products. These genes have been functionally validated and reported to play significant role in stress response in model plants like Arabidopsis, rice and other legume crops. Chickpea EST sequences available at NCBI EST database were used for the identification of abiotic stress responsive genes. A total of 8,536 unique coding long sequences were used for identification of chickpea homologues of these abiotic stress responsive genes by sequence similarity search (BLASTN and BLASTX). These genes can be further explored towards achieving the goal of developing superior chickpea varieties providing improved yields under stress conditions using modern molecular breeding approaches

    Plant responses to abiotic stress: the chromatin context of transcriptional regulation

    Get PDF
    The ability of plants to cope with abiotic environmental stresses such as drought, salinity, heat, cold or flooding relies on flexible mechanisms for re-programming gene expression. Over recent years it has become apparent that transcriptional regulation needs to be understood within its structural context. Chromatin, the assembly of DNA with histone proteins, generates a local higher-order structure that impacts on the accessibility and effectiveness of the transcriptional machinery, as well as providing a hub for multiple protein interactions. Several studies have shown that chromatin features such as histone variants and post-translational histone modifications are altered by environmental stress, and they could therefore be primary stress targets that initiate transcriptional stress responses. Alternatively, they could act downstream of stress-induced transcription factors as an integral part of transcriptional activity. A few experimental studies have addressed this ‘chicken-and-egg’ problem in plants and other systems, but to date the causal relationship between dynamic chromatin changes and transcriptional responses under stress is still unclear. In this review we have collated the existing information on concurrent epigenetic and transcriptional responses of plants to abiotic stress, and we have assessed the evidence using a simple theoretical framework of causality scenarios

    Consistent alleviation of abiotic stress with silicon addition: a meta-analysis

    Get PDF
    1. Hundreds of single species studies have demonstrated the facility of silicon (Si) to alleviate diverse abiotic stresses in plants. Understanding of the mechanisms of Si-mediated stress alleviation is progressing, and several reviews have brought information together. A quantitative assessment of the alleviative capacity of Si, however, which could elucidate plant Si function more broadly, was lacking. 2. We combined the results of 145 experiments, predominantly on agricultural species, in a meta-analysis to statistically assess the responses of stressed plants to Si supply across multiple plant families and abiotic stresses. We interrogated our database to determine whether stressed plants increased in dry mass and net assimilation rate, oxidative stress markers were reduced, antioxidant responses were increased and whether element uptake showed consistent changes when supplied with Si. 3. We demonstrated that across plant families and stress types, Si increases dry weight, assimilation rate and chlorophyll biosynthesis and alleviates oxidative damage in stressed plants. In general, results indicated that plant family (as a proxy for accumulator type) and stress type had significant explanatory power for variation in responses. The consistent reduction in oxidative damage was not mirrored by consistent increases in antioxidant production, indicative of the several different stress alleviation mechanisms in which Si is involved. Silicon addition increased K in shoots, decreased As and Cd in roots and Na and Cd in shoots. Silicon addition did not affect Al, Ca or Mn concentration in shoots and roots of stressed plants. Plants had significantly lower concentrations of Si accumulated in shoots but not in roots when stressed. 4. Meta-analyses showed consistent alleviation by Si of oxidative damage caused by a range of abiotic stresses across diverse species. Our findings indicate that Si is likely to be a useful fertilizer for many crops facing a spectrum of abiotic stresses. Similarities in responses across families provide strong support for a role of Si in the alleviation of abiotic stress in natural systems, where it has barely been explored. We suggest this role may become more important under a changing climate and more experiments using non-agricultural species are now needed

    Circadian regulation of abiotic stress tolerance in plants

    Get PDF
    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types environmental stress, and to acclimate to them. The clock controls expression of a large fraction abiotic stress-responsive genes, as well as biosynthesis and signalling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress
    • 

    corecore