30 research outputs found

    Abdominal Tumor Characterization and Recognition Using Superior-Order Cooccurrence Matrices, Based on Ultrasound Images

    Get PDF
    The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors, using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the complex, chaotic structure of the corresponding tissue

    Clinical Applicability of MRI Texture Analysis

    Get PDF
    Radiologisten kuvien tulkinta on perinteisesti perustunut asiantuntijan nÀköhavaintoihin. Tietokoneavusteisten menetelmien kÀyttö lisÀÀntyy radiologisessa diagnostiikassa. Tekstuuria eli kuviorakennetta on kÀytetty erottelevana ominaisuutena kudoksia luokiteltaessa ja karakterisoitaessa. Kuvan kuviorakenteen ominaisuuksia kuvaavia tekstuuriparametreja voidaan laskea erilaisilla matemaattisilla ja signaalinkÀsittelymenetelmillÀ. Tekstuurianalyysi on antanut lupaavia tuloksia magneettikuvien tarkastelussa. Sen avulla on voitu mÀÀrittÀÀ sekÀ pieniÀ hajanaisia ettÀ suurempia paikallisia muutoksia. MenetelmÀllÀ on mahdollista havaita ihmissilmÀlle nÀkymÀttömiÀ sekÀ nÀkyviÀ muutoksia. MenetelmÀÀ tulisi tutkia edelleen, koska kliinisen menetelmÀn kehittÀmistÀ varten tarvitaan lisÀtietoa sen soveltuvuudesta erilaisille aineistoille sekÀ analyysimenetelmÀn eri vaiheiden optimoimisesta. TÀmÀn vÀitöstutkimuksen tavoite oli selvittÀÀ magneettikuvauksen tekstuurianalyysin kliinistÀ kÀytettÀvyyttÀ eri kannoilta. Tutkimusaineisto koostui kolmesta potilasmateriaalista ja yhdestÀ terveiden urheilijoiden joukosta sekÀ heidÀn verrokeistaan. Aineisto kerÀttiin osina Tampereen yliopistollisessa sairaalassa toteutettuja laajempia tutkimusprojekteja, ja mukaan otettiin yhteensÀ 220 osallistujaa. EnsimmÀisessÀ osatyössÀ tarkasteltiin pehmytkudoskuvantamista, non-Hodgkin-lymfooman hoitovasteen arviointia tekstuurianalyysilla. Kaksi seuraavaa osatyötÀ kÀsitteli keskushermoston kuvantamista: lieviÀ aivovammoja sekÀ MS-tautia. ViimeisessÀ osatyössÀ arvioitiin liikunnan vaikutusta urheilijoiden ja verrokkien reisiluun kaulan luurakenteeseen. Kudosten ja muutosten vertailuissa oli edustettuna sekÀ ympÀröivÀstÀ kudoksesta visuaalisella tarkastelulla erottumattomia ettÀ selkeÀsti erottuvia rakenteita. LisÀksi tutkimuksessa selvitettiin mielenkiintoalueen kÀsityönÀ tehtÀvÀn rajaamisen ja magneettikuvaussekvenssin valinnan vaikutusta analyysiin. Yhteenvetona todetaan, ettÀ tekstuurimenetelmÀllÀ on mahdollista havaita ja karakterisoida tutkimukseen valikoidun aineiston edustamia etiologialtaan erilaisia muutoksia kliinisistÀ 1.5 Teslan magneettikuvista. Tutkimuksessa kÀsitellyt yksityiskohdat MRI-kuvasarjojen valinnasta sekÀ mielenkiintoalueiden piirtÀmisestÀ antavat pohjaa kliinisen protokollan kehittÀmiseen. Osa tutkimusaineistoista oli kokeellisia, ja niiden tulokset tulisi vahvistaa laajemmilla kliinisillÀ tutkimuksilla.The usage of computerised methods in radiological image interpretation is becoming more common. Texture analysis has shown promising results as an image analysis method for detecting non-visible and visible lesions, with a number of applications in magnetic resonance imaging (MRI). Although several recent studies have investigated this topic, there remains a need for further analyses incorporating different clinical materials and taking protocol planning for clinical analyses into account. The purpose of this thesis was to determine the clinical applicability of MRI texture analysis from different viewpoints. This study is based on three patient materials and one collection of healthy athletes and their referents. A total of 220 participants in wider on-going study projects at Tampere University Hospital were included in this thesis. The materials include a study on non-Hodgkin lymphoma, representing soft tissue imaging with malignant disease treatment monitoring; and two studies on central nervous system diseases, mild traumatic brain injury and multiple sclerosis. A musculoskeletal imaging study investigated load-associated physiological changes in healthy participants? bones. Furthermore, manual Region of Interest (ROI) definition methods and the selection of MRI sequences for analyses of visible and non-visible lesions were evaluated. In summary, this study showed that non-visible lesions and physiological changes as well as visible focal lesions of different aetiologies could be detected and characterised by texture analysis of routine clinical 1.5 T scans. The details of MRI sequence selection and ROI definition in this study may serve as guidelines for the development of clinical protocols. However, these studies are partly experimental and need to be validated with larger sample sizes

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    Image texture analysis of transvaginal ultrasound in monitoring ovarian cancer

    Get PDF
    Ovarian cancer has the highest mortality rate of all gynaecologic cancers and is the fifth most common cancer in UK women. It has been dubbed “the silent killer” because of its non-specific symptoms. Amongst various imaging modalities, ultrasound is considered the main modality for ovarian cancer triage. Like other imaging modalities, the main issue is that the interpretation of the images is subjective and observer dependent. In order to overcome this problem, texture analysis was considered for this study. Advances in medical imaging, computer technology and image processing have collectively ramped up the interest of many researchers in texture analysis. While there have been a number of successful uses of texture analysis technique reported, to my knowledge, until recently it has yet to be applied to characterise an ovarian lesion from a B-mode image. The concept of applying texture analysis in the medical field would not replace the conventional method of interpreting images but is simply intended to aid clinicians in making their diagnoses. Five categories of textural features were considered in this study: grey-level co-occurrence matrix (GLCM), Run Length Matrix (RLM), gradient, auto-regressive (AR) and wavelet. Prior to the image classification, the robustness or how well a specific textural feature can tolerate variation arises from the image acquisition and texture extraction process was first evaluated. This includes random variation caused by the ultrasound system and the operator during image acquisition. Other factors include the influence of region of interest (ROI) size, ROI depth, scanner gain setting, and „calliper line‟. Evaluation of scanning reliability was carried out using a tissue-equivalent phantom as well as evaluations of a clinical environment. iii Additionally, the reliability of the ROI delineation procedure for clinical images was also evaluated. An image enhancement technique and semi-automatic segmentation tool were employed in order to improve the ROI delineation procedure. The results of the study indicated that two out of five textural features, GLCM and wavelet, were robust. Hence, these two features were then used for image classification purposes. To extract textural features from the clinical images, two ROI delineation approaches were introduced: (i) the textural features were extracted from the whole area of the tissue of interest, and (ii) the anechoic area within the normal and malignant tissues was excluded from features extraction. The results revealed that the second approach outperformed the first approach: there is a significant difference in the GLCM and wavelet features between the three groups: normal tissue, cysts, and malignant. Receiver operating characteristic (ROC) curve analysis was carried out to determine the discriminatory ability of textural features, which was found to be satisfactory. The principal conclusion was that GLCM and wavelet features can potentially be used as computer aided diagnosis (CAD) tools to help clinicians in the diagnosis of ovarian cancer

    Image Processing and Analysis for Preclinical and Clinical Applications

    Get PDF
    Radiomics is one of the most successful branches of research in the field of image processing and analysis, as it provides valuable quantitative information for the personalized medicine. It has the potential to discover features of the disease that cannot be appreciated with the naked eye in both preclinical and clinical studies. In general, all quantitative approaches based on biomedical images, such as positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI), have a positive clinical impact in the detection of biological processes and diseases as well as in predicting response to treatment. This Special Issue, “Image Processing and Analysis for Preclinical and Clinical Applications”, addresses some gaps in this field to improve the quality of research in the clinical and preclinical environment. It consists of fourteen peer-reviewed papers covering a range of topics and applications related to biomedical image processing and analysis

    Deep learning-based diagnostic system for malignant liver detection

    Get PDF
    Cancer is the second most common cause of death of human beings, whereas liver cancer is the fifth most common cause of mortality. The prevention of deadly diseases in living beings requires timely, independent, accurate, and robust detection of ailment by a computer-aided diagnostic (CAD) system. Executing such intelligent CAD requires some preliminary steps, including preprocessing, attribute analysis, and identification. In recent studies, conventional techniques have been used to develop computer-aided diagnosis algorithms. However, such traditional methods could immensely affect the structural properties of processed images with inconsistent performance due to variable shape and size of region-of-interest. Moreover, the unavailability of sufficient datasets makes the performance of the proposed methods doubtful for commercial use. To address these limitations, I propose novel methodologies in this dissertation. First, I modified a generative adversarial network to perform deblurring and contrast adjustment on computed tomography (CT) scans. Second, I designed a deep neural network with a novel loss function for fully automatic precise segmentation of liver and lesions from CT scans. Third, I developed a multi-modal deep neural network to integrate pathological data with imaging data to perform computer-aided diagnosis for malignant liver detection. The dissertation starts with background information that discusses the proposed study objectives and the workflow. Afterward, Chapter 2 reviews a general schematic for developing a computer-aided algorithm, including image acquisition techniques, preprocessing steps, feature extraction approaches, and machine learning-based prediction methods. The first study proposed in Chapter 3 discusses blurred images and their possible effects on classification. A novel multi-scale GAN network with residual image learning is proposed to deblur images. The second method in Chapter 4 addresses the issue of low-contrast CT scan images. A multi-level GAN is utilized to enhance images with well-contrast regions. Thus, the enhanced images improve the cancer diagnosis performance. Chapter 5 proposes a deep neural network for the segmentation of liver and lesions from abdominal CT scan images. A modified Unet with a novel loss function can precisely segment minute lesions. Similarly, Chapter 6 introduces a multi-modal approach for liver cancer variants diagnosis. The pathological data are integrated with CT scan images to diagnose liver cancer variants. In summary, this dissertation presents novel algorithms for preprocessing and disease detection. Furthermore, the comparative analysis validates the effectiveness of proposed methods in computer-aided diagnosis

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    Advances in the Diagnosis and Treatment of Thyroid Carcinoma

    Get PDF
    This reprint is related to the latest research in the field of thyroid surgery, including molecular and imaging diagnosis, surgical treatment, and the treatment of recurrent disease and advanced thyroid carcinoma
    corecore