1,385 research outputs found

    Collisional properties of cold spin-polarized nitrogen gas: theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules

    Get PDF
    We report a combined experimental and theoretical study of collision-induced dipolar relaxation in a cold spin-polarized gas of atomic nitrogen (N). We use buffer gas cooling to create trapped samples of 14N and 15N atoms with densities 5+/-2 x 10^{12} cm-3 and measure their magnetic relaxation rates at milli-Kelvin temperatures. Rigorous quantum scattering calculations based on accurate ab initio interaction potentials for the 7Sigma_u electronic state of N2 demonstrate that dipolar relaxation in N + N collisions occurs at a slow rate of ~10^{-13} cm3/s over a wide range of temperatures (1 mK to 1 K) and magnetic fields (10 mT to 2 T). The calculated dipolar relaxation rates are insensitive to small variations of the interaction potential and to the magnitude of the spin-exchange interaction, enabling the accurate calibration of the measured N atom density. We find consistency between the calculated and experimentally determined rates. Our results suggest that N atoms are promising candidates for future experiments on sympathetic cooling of molecules.Comment: 48 pages, 17 figures, 3 table

    Density Functional Theory of doped superfluid liquid helium and nanodroplets

    Full text link
    During the last decade, density function theory (DFT) in its static and dynamic time dependent forms, has emerged as a powerful tool to describe the structure and dynamics of doped liquid helium and droplets. In this review, we summarize the activity carried out in this field within the DFT framework since the publication of the previous review article on this subject [M. Barranco et al., J. Low Temp. Phys. 142, 1 (2006)]. Furthermore, a comprehensive presentation of the actual implementations of helium DFT is given, which have not been discussed in the individual articles or are scattered in the existing literature. This is an Accepted Manuscript of an article published on August 2, 2017 by Taylor & Francis Group in Int. Rev. Phys. Chem. 36, 621 (2017), available online: http://dx.doi.org/10.1080/0144235X.2017.1351672Comment: 113 pages, 42 figure

    Density functional calculations for 4He droplets

    Full text link
    A novel density functional, which accounts correctly for the equation of state, the static response function and the phonon-roton dispersion in bulk liquid helium, is used to predict static and dynamic properties of helium droplets. The static density profile is found to exhibit significant oscillations, which are accompanied by deviations of the evaporation energy from a liquid drop behaviour in the case of small droplets. The connection between such oscillations and the structure of the static response function in the liquid is explicitly discussed. The energy and the wave function of excited states are then calculated in the framework of time dependent density functional theory. The new functional, which contains backflow-like effects, is expected to yield quantitatively correct predictions for the excitation spectrum also in the roton wave-length range.Comment: 15 pages, REVTEX, 10 figures available upon request or at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm

    Cold collisions of heavy 2ÎŁ^2\Sigma molecules with alkali-metal atoms in a magnetic field: Ab initio analysis and prospects for sympathetic cooling of SrOH(2ÎŁ)(^2\Sigma) by Li(2^2S)

    Full text link
    We use accurate ab initio and quantum scattering calculations to explore the prospects for sympathetic cooling of the heavy molecular radical SrOH(2ÎŁ^2\Sigma) by ultracold Li atoms in a magnetic trap. A two-dimensional potential energy surface (PES) for the triplet electronic state of Li-SrOH is calculated ab initio using the partially spin-restricted coupled cluster method with single, double and perturbative triple excitations and a large correlation-consistent basis set. The highly anisotropic PES has a deep global minimum in the skewed Li-HOSr geometry with De=4932D_e=4932 cm−1^{-1} and saddle points in collinear configurations. Our quantum scattering calculations predict low spin relaxation rates in fully spin-polarized Li+SrOH collisions with the ratios of elastic to inelastic collision rates well in excess of 100 over a wide range of magnetic fields (1-1000 G) and collision energies (10−5−0.1^{-5}-0.1~K) suggesting favorable prospects for sympathetic cooling of SrOH molecules with spin-polarized Li atoms in a magnetic trap. We find that spin relaxation in Li+SrOH collisions occurs via a direct mechanism mediated by the magnetic dipole-dipole interaction between the electron spins of Li and SrOH, and that the indirect (spin-rotation) mechanism is strongly suppressed. The upper limit to the Li+SrOH reaction rate coefficient calculated for the singlet PES using adiabatic capture theory is found to decrease from 4×10−104\times 10^{-10}~cm3^3/s to a limiting value of 3.5×10−103.5\times 10^{-10} cm3^3/s with decreasing temperature from 0.1 K to 1 ÎŒ\muK

    Ultrafast charge transfer and vibronic coupling in a laser-excited hybrid inorganic/organic interface

    No full text
    Hybrid interfaces formed by inorganic semiconductors and organic molecules are intriguing materials for opto-electronics. Interfacial charge transfer is primarily responsible for their peculiar electronic structure and optical response. Hence, it is essential to gain insight into this fundamental process also beyond the static picture. Ab initio methods based on real-time time-dependent density-functional theory coupled to the Ehrenfest molecular dynamics scheme are ideally suited for this problem. We investigate a laser-excited hybrid inorganic/organic interface formed by the electron acceptor molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) physisorbed on a hydrogenated silicon cluster, and we discuss the fundamental mechanisms of charge transfer in the ultrashort time window following the impulsive excitation. The considered interface is p-doped and exhibits charge transfer in the ground state. When it is excited by a resonant laser pulse, the charge transfer across the interface is additionally increased, but contrary to previous observations in all-organic donor/acceptor complexes, it is not further promoted by vibronic coupling. In the considered time window of 100 fs, the molecular vibrations are coupled to the electron dynamics and enhance intramolecular charge transfer. Our results highlight the complexity of the physics involved and demonstrate the ability of the adopted formalism to achieve a comprehensive understanding of ultrafast charge transfer in hybrid materials

    Theoretical Studies of Singlet Fission: Searching for Materials and Exploring Mechanisms

    Get PDF
    In this Review article, a survey is given for theoretical studies in the subject of singlet fission. Singlet fission converts one singlet exciton to two triplet excitons. With the doubled number of excitons and the longer lifetime of the triplets, singlet fission provides an avenue to improve the photoelectric conversion efficiency in organic photovoltaic devices. It has been a subject of intense research in the past decade. Theoretical studies play an essential role in understanding singlet fission. This article presents a Review of theoretical studies in singlet fission since 2006, the year when the research interest in this subject was reignited. Both electronic structure and dynamics studies are covered. Electronic structure studies provide guidelines for designing singlet fission chromophores and insights into the couplings between single‐ and multi‐excitonic states. The latter provides fundamental knowledge for engineering interchromophore conformations to enhance the fission efficiency. Dynamics studies reveal the importance of vibronic couplings in singlet fission

    Laser-Induced Fluorescence Detection of the Elusive SiCF Free Radical

    Get PDF
    The SiCF free radical has been spectroscopically identified for the first time. The radical was produced in an electric discharge jet using CF3Si(CH3)3 or CF3SiH3 vapor in high pressure argon as the precursor. The laser-induced fluorescence spectrum of the à 2ÎŁ+ − X̃ 2Π band system in the 610 − 550 nm region was recorded and the 2Π3/2 spin component of the 0—0 band was studied at high resolution. Rotational analysis gave the B values for the combining states, and by fixing the CF bond lengths at ab initio values we obtained r″(Si–C) = 1.692(1)Å and râ€Č(Si–C) = 1.594(1)Å. The bond lengths correspond to a silicon-carbon double bond in the ground state and an unusual Si−C triple bond in the excited state. Single vibronic level emission spectra yielded the ground state bending and stretching energy levels. These were fitted to a Renner-Teller model that included spin-orbit and limited vibrational anharmonicity effects

    Nuclear ab initio calculations of He-6 beta-decay for beyond the Standard Model studies

    Get PDF
    Precision measurements of beta-decay observables offer the possibility to search for deviations from the Standard Model. A possible discovery of such deviations requires accompanying first-principles calculations. Here we compute the nuclear structure corrections for the beta-decay of He-6 which is of central interest in several experimental efforts. We employ the impulse approximation together with wave functions calculated using the ab initio no-core shell model with potentials based on chiral effective field theory. We use these state-of-the-art calculations to give a novel and comprehensive analysis of theoretical uncertainties. We find that nuclear corrections, which we compute within the sensitivity of future experiments, create significant deviation from the naive Gamow-Teller predictions, making their accurate assessment essential in searches for physics beyond the Standard Model. (C) 2022 The Author(s). Published by Elsevier B.V

    Hyperfine Rather Than Spin Splittings Dominate the Fine Structure of the \u3cem\u3eB\u3c/em\u3e \u3csup\u3e4\u3c/sup\u3eΣ\u3csup\u3e-\u3c/sup\u3e–\u3cem\u3eX\u3c/em\u3e \u3csup\u3e4\u3c/sup\u3eΣ\u3csup\u3e-\u3c/sup\u3e Bands of AIC

    Get PDF
    Laser-induced fluorescence and wavelength resolved emission spectra of the B 4Σ−–X 4Σ− band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bÎČS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λâ€Č is of the order of ≈0.025–0.030 cm−1
    • 

    corecore