2,020 research outputs found

    A comment on "Ab initio calculations of pressure-dependence of high-order elastic constants using finite deformations approach" by I. Mosyagin, A.V. Lugovskoy, O.M. Krasilnikov, Yu.Kh. Vekilov, S.I. Simak and I.A. Abrikosov

    Full text link
    Recently, I. Mosyagin, A.V. Lugovskoy, O.M. Krasilnikov, Yu.Kh. Vekilov, S.I. Simak and I.A. Abrikosov in the paper: "Ab initio calculations of pressure-dependence of high-order elastic constants using finite deformations approach"[Computer Physics Communications 220 (2017) 2030] presented a description of a technique for ab initio calculations of the pressure dependence of second- and third-order elastic constants. Unfortunately, the work contains serious and fundamental flaws in the field of finite-deformation solid mechanics.Comment: 3 pages, 0 figure

    The third-order elastic moduli and pressure derivatives for AlRE (RE=Y, Pr, Nd, Tb, Dy, Ce) intermetallics with B2-structure: A first-principles study

    Full text link
    The third-order elastic moduli and pressure derivatives of the second-order elastic constants of novel B2-type AlRE (RE=Y, Pr, Nd, Tb, Dy, Ce) intermetallics are presented from first-principles calculations. The elastic moduli are obtained from the coefficients of the polynomials from the nonlinear least-squares fitting of the energy-strain functions. The calculated second-order elastic constants of AlRE intermetallics are consistent with the previous calculations. To judge that our computational accuracy is reasonable, the calculated third-order constants of Al are compared with the available experimental data and other theoretical results and found very good agreement. In comparison with the theory of the linear elasticity, the third-order effects are very important with the finite strains are lager than approximately 3.5%. Finally, the pressure derivative has been discussed.Comment: 10 pages, 2 figures, submitted to solid state communicatio

    Non-linear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene

    Get PDF
    We investigate non-linear elastic deformations in the phase field crystal model and derived amplitude equations formulations. Two sources of non-linearity are found, one of them based on geometric non-linearity expressed through a finite strain tensor. It reflects the Eulerian structure of the continuum models and correctly describes the strain dependence of the stiffness. In general, the relevant strain tensor is related to the left Cauchy-Green deformation tensor. In isotropic one- and two-dimensional situations the elastic energy can be expressed equivalently through the right deformation tensor. The predicted isotropic low temperature non-linear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K=4K'=4 for bcc. A two-dimensional generalization suggests K2D=5K'_{2D}=5. These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical non-linearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformations the magnitudes of the amplitudes depend on their relative orientation to the applied strain.Comment: 16 page

    Designing electronic properties of two-dimensional crystals through optimization of deformations

    Full text link
    One of the enticing features common to most of the two-dimensional electronic systems that are currently at the forefront of materials science research is the ability to easily introduce a combination of planar deformations and bending in the system. Since the electronic properties are ultimately determined by the details of atomic orbital overlap, such mechanical manipulations translate into modified electronic properties. Here, we present a general-purpose optimization framework for tailoring physical properties of two-dimensional electronic systems by manipulating the state of local strain, allowing a one-step route from their design to experimental implementation. A definite example, chosen for its relevance in light of current experiments in graphene nanostructures, is the optimization of the experimental parameters that generate a prescribed spatial profile of pseudomagnetic fields in graphene. But the method is general enough to accommodate a multitude of possible experimental parameters and conditions whereby deformations can be imparted to the graphene lattice, and complies, by design, with graphene's elastic equilibrium and elastic compatibility constraints. As a result, it efficiently answers the inverse problem of determining the optimal values of a set of external or control parameters that result in a graphene deformation whose associated pseudomagnetic field profile best matches a prescribed target. The ability to address this inverse problem in an expedited way is one key step for practical implementations of the concept of two-dimensional systems with electronic properties strain-engineered to order. The general-purpose nature of this calculation strategy means that it can be easily applied to the optimization of other relevant physical quantities which directly depend on the local strain field, not just in graphene but in other two-dimensional electronic membranes.Comment: 37 pages, 9 figures. This submission contains low-resolution bitmap images; high-resolution images can be found in version 1, which is ~13.5 M

    First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3

    Full text link
    We carry out a completely first-principles study of the ferroelectric phase transitions in BaTiO3_3. Our approach takes advantage of two features of these transitions: the structural changes are small, and only low-energy distortions are important. Based on these observations, we make systematically improvable approximations which enable the parameterization of the complicated energy surface. The parameters are determined from first-principles total-energy calculations using ultra-soft pseudopotentials and a preconditioned conjugate-gradient scheme. The resulting effective Hamiltonian is then solved by Monte Carlo simulation. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. We find the transitions to be intermediate between order-disorder and displacive character. We find all three phase transitions to be of first order. The roles of different interactions are discussed.Comment: 33 pages latex file, 9 figure

    Novel effects of strains in graphene and other two dimensional materials

    Full text link
    The analysis of the electronic properties of strained or lattice deformed graphene combines ideas from classical condensed matter physics, soft matter, and geometrical aspects of quantum field theory (QFT) in curved spaces. Recent theoretical and experimental work shows the influence of strains in many properties of graphene not considered before, such as electronic transport, spin-orbit coupling, the formation of Moir\'e patterns, optics, ... There is also significant evidence of anharmonic effects, which can modify the structural properties of graphene. These phenomena are not restricted to graphene, and they are being intensively studied in other two dimensional materials, such as the metallic dichalcogenides. We review here recent developments related to the role of strains in the structural and electronic properties of graphene and other two dimensional compounds.Comment: 75 pages, 15 figures, review articl
    corecore