9 research outputs found

    An Efficient and Epimerization Free Synthesis of C-Terminal Arylamides Derived from α-Amino Acids and Peptide Acids via T3p Activation

    Get PDF
    A high yield and rapid synthesis of enantiomerically pure N α -protected amino/peptide acid arylamides using n-propylphosphonic anhydride (T3P) in presence of N-methylmorpholine is described. The generality of the reaction has been studied for various N α -protected amino acids with diverse range of aromatic amines and coumarin derivatives

    Predicting and Testing Helix-Mimetic Inhibitors of the p53-Mdm2 Interaction

    Get PDF
    Aberrant protein-protein interactions (PPIs) are found in many disease states. Consequently, there is a need for PPI inhibitors for use as research tools and pharmaceutical lead compounds. Computational methods could greatly assist with the search for new PPIs. Oligobenzamides are novel PPI inhibitors which can theoretically be produced to display any sequence of side chains. Understanding the nature of oligobenzamide binding is important for identification of the most efficient strategy of predicting oligobenzamide inhibitors. The prediction of oligobenzamide affinities using thermodynamic integration and implicit solvent methods is described. Affinities of oligobenzamides for Mdm2 predicted using implicit solvent methods bore a moderate correlation with measured affinities. Examination of MM-PBSA results using analysis of variance revealed that it is not necessary to run simulations with every member of a large combinatorial library in order to predict their relative affinities because within a particular binding site, the degree of interaction between the side chains is small. However, it could be useful to separate molecules based on their predicted binding pose because oligobenzamides can bind to Mdm2 in many different ways, depending on the choice of side chains. This insight will be valuable for future attempts to predict oligobenzamide affinities. The 1H-15N HSQC NMR spectrum peaks of 15N-labelled Mdm2 L33E were assigned to facilitate the future validation of binding poses. An oligoamide was shown using NMR to bind in the correct place. However, NMR testing revealed that oligobenzamides can aggregate in aqueous solution despite being soluble. A novel FRET-based method was also developed which can be used to test potential inhibitors with a low solubility and high absorbance during their development. It was adapted for a microwell plate to facilitate future high throughput screening and an assay involving Cherry-labelled Mdm2 was tested which could be developed into an in vivo assay in the future

    TECHNART 2017. Non-destructive and microanalytical techniques in art and cultural heritage. Book of abstracts

    Get PDF
    440 p.TECHNART2017 is the international biannual congress on the application of Analytical Techniques in Art and Cultural Heritage. The aim of this European conference is to provide a scientific forum to present and promote the use of analytical spectroscopic techniques in cultural heritage on a worldwide scale to stimulate contacts and exchange experiences, making a bridge between science and art. This conference builds on the momentum of the previous TECHNART editions of Lisbon, Athens, Berlin, Amsterdam and Catania, offering an outstanding and unique opportunity for exchanging knowledge on leading edge developments. Cultural heritage studies are interpreted in a broad sense, including pigments, stones, metal, glass, ceramics, chemometrics on artwork studies, resins, fibers, forensic applications in art, history, archaeology and conservation science. The meeting is focused in different aspects: - X-ray analysis (XRF, PIXE, XRD, SEM-EDX). - Confocal X-ray microscopy (3D Micro-XRF, 3D Micro-PIXE). - Synchrotron, ion beam and neutron based techniques/instrumentation. - FT-IR and Raman spectroscopy. - UV-Vis and NIR absorption/reflectance and fluorescence. - Laser-based analytical techniques (LIBS, etc.). - Magnetic resonance techniques. - Chromatography (GC, HPLC) and mass spectrometry. - Optical imaging and coherence techniques. - Mobile spectrometry and remote sensing
    corecore