95 research outputs found

    Caractérisation structurale d'enzymes hydrolysant les organophosphorés et rationalisation de leur amélioration en vue d'applications biotechnologiques

    Get PDF
    Organophosphorus compounds are neurotoxic. Their decontamination is difficult and cost prohibitive. An appealing solution resides in the use of enzymes capable of degrading such compounds. Bacterial enzymes are poorly stable and expensive. We identified highly resistant enzymes capable of slowly biodegrading these compounds. We have developped a strategy allowing to increase the activity of our enzyme by using the similarities with the highly active enzymes. The activity was increased by a factor of 1000 against OPs. We analyzed the origins of these ameliorations and showed emergent concepts in enzyme evolution.Les organophosphorés (OPs) sont des neurotoxiques. Leur décontamination est difficile et coûteuse. L’utilisation d’enzymes capables de les détoxifier est une solution élégante. Les enzymes bactériennes sont peu stables et chères à produire. Nous avons identifié des enzymes très résistantes, capable de biodégrader lentement ces composés. Nous avons alors développé une stratégie permettant d'améliorer l'activité de l'enzyme très stable en nous basant sur les enzymes les plus actives. Celle-ci fut améliorée de plus de 1000 fois envers ces insecticides. Enfin, nous avons analysé l'origine de ces améliorations et mis en évidence des concepts émergents dans l'évolution des enzymes

    Protonation of the Binuclear Metal Center within the Active Site of Phosphotriesterase †

    Get PDF
    ABSTRACT: Phosphotriesterase (PTE) is a binuclear metalloenzyme that catalyzes the hydrolysis of organophosphates, including pesticides and chemical warfare agents, at rates approaching the diffusion controlled limit. The catalytic mechanism of this enzyme features a bridging solvent molecule that is proposed to initiate nucleophilic attack at the phosphorus center of the substrate. X-band EPR spectroscopy is utilized to investigate the active site of Mn/Mn-substituted PTE. Simulation of the dominant EPR spectrum from the coupled binuclear center of Mn/Mn-PTE requires slightly rhombic zero-field splitting parameters. Assuming that the signal arises from the S ) 2 manifold, an exchange coupling constant of J ) -2.7 ( 0.2 cm -1 (H ex ) -2JS 1 ‚S 2 ) is calculated. A kinetic pK a of 7.1 ( 0.1 associated with loss in activity at low pH indicates that a protonation event is responsible for inhibition of catalysis. Analysis of changes in the EPR spectrum as a function of pH provides a pK a of 7.3 ( 0.1 that is assigned as the protonation of the hydroxyl bridge. From the comparison of kinetic and spectral pK a values, it is concluded that the loss of catalytic activity at acidic pH results from the protonation of the hydroxide that bridges the binuclear metal center. Phosphotriesterase (PTE) 1 catalyzes the hydrolysis of a wide range of organophosphate esters, including agricultural pesticides and chemical warfare agents (1-3). The enzyme has been isolated from soil bacteria, but the natural substrate for PTE is not known. PTE is a member of the amidohydrolase superfamily, which also includes urease, dihydroorotase, and approximately 30 other enzymes of known specificity (4). The high-resolution X-ray crystal structure of Zn/Zn-PTE reveals that it is a homodimeric protein containing an active site with two divalent metal ions embedded within a ( /R) 8 -barrel motif (5). The R-metal ion is ligated by His-55, His-57, and Asp-301 while the -metal ion is coordinated to His-201 and His-230 as illustrated i

    Molecular Modeling in Enzyme Design, Toward In Silico Guided Directed Evolution

    Get PDF
    Directed evolution (DE) creates diversity in subsequent rounds of mutagenesis in the quest of increased protein stability, substrate binding, and catalysis. Although this technique does not require any structural/mechanistic knowledge of the system, the frequency of improved mutations is usually low. For this reason, computational tools are increasingly used to focus the search in sequence space, enhancing the efficiency of laboratory evolution. In particular, molecular modeling methods provide a unique tool to grasp the sequence/structure/function relationship of the protein to evolve, with the only condition that a structural model is provided. With this book chapter, we tried to guide the reader through the state of the art of molecular modeling, discussing their strengths, limitations, and directions. In addition, we suggest a possible future template for in silico directed evolution where we underline two main points: a hierarchical computational protocol combining several different techniques and a synergic effort between simulations and experimental validation.Peer ReviewedPostprint (author's final draft

    Discovering novel hydrolases from hot environments

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordNovel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.European CommissionEuropean Union FP

    Computational design of biological catalysts

    Get PDF
    The purpose of this tutorial review is to illustrate the way to design new and powerful catalysts. The first possibility to get a biological catalyst for a given chemical process is to use existing enzymes that catalyze related reactions. The second possibility is the use of immune systems that recognize stable molecules resembling the transition structure of the target reaction. We finally show how computational techniques are able to provide an enormous quantity of information, providing clues to guide the development of new biological catalyst

    Computer-Aided Lead Optimization: Improved Small-Molecule Inhibitor of the Zinc Endopeptidase of Botulinum Neurotoxin Serotype A

    Get PDF
    Optimization of a serotype-selective, small-molecule inhibitor of botulinum neurotoxin serotype A (BoNTA) endopeptidase is a formidable challenge because the enzyme-substrate interface is unusually large and the endopeptidase itself is a large, zinc-binding protein with a complex fold that is difficult to simulate computationally. We conducted multiple molecular dynamics simulations of the endopeptidase in complex with a previously described inhibitor (Kiapp of 7±2.4 µM) using the cationic dummy atom approach. Based on our computational results, we hypothesized that introducing a hydroxyl group to the inhibitor could improve its potency. Synthesis and testing of the hydroxyl-containing analog as a BoNTA endopeptidase inhibitor showed a twofold improvement in inhibitory potency (Kiapp of 3.8±0.8 µM) with a relatively small increase in molecular weight (16 Da). The results offer an improved template for further optimization of BoNTA endopeptidase inhibitors and demonstrate the effectiveness of the cationic dummy atom approach in the design and optimization of zinc protease inhibitors
    • …
    corecore