3 research outputs found

    A Simulation of composite dispatching rules, CONWIP and push lot release in semiconductor fabrication

    Get PDF
    This paper evaluates dispatching rules and order release policies in two fabs representing two wafer fabrication modes, namely, ASIC and low-mix high-volume production. Order release policies were fixed-interval (push) release, and constant work-in-process, CONWIP (pull) policy. Following rigorous fab modeling and statistical analysis, new composite dispatching rules were found to be robust for system cycle time and due-date adherence measures, in both production modes

    Analysis of production control methods for semiconductor research and development fabs using simulation

    Get PDF
    The importance of semiconductor device fabrication has been rising steadily over many years. Integrated circuit technology and innovation depends on successful research and development (R&D). R&D establishes the direction for prevailing technology in electronics and computers. To be a leader in the semiconductor industry, a company must bring technology to the market as soon as its application is deemed feasible. Using suitable production control methods for wafer fabrication in R&D fabs ensures reduction in cycle times and planned inventories, which in turn help to more quickly, transfer the new technology to the production fabs, where products are made on a commercial scale. This helps to minimize the time to market. The complex behavior of research fabs produces varying results when conventional production control methodologies are applied. Simulation modeling allows the study of the behavior of the research fab by providing statistical reports on performance measures. The goal of this research is to investigate production control methods in semiconductor R&D fabs. A representative R&D fab is modeled, where an appropriate production load is applied to the fab by using a representative product load. Simulation models are run with different levels of production volume, lot priorities, primary and secondary dispatching strategies and due date tightness as treatment combinations in a formally designed experiment. Fab performance is evaluated based on four performance measures, which include percent on time delivery, average cycle time, standard deviation of cycle time and average work-in-process. Statistical analyses are used to determine the best performing dispatching rules for given fab operating scenarios. Results indicate that the optimal combination of dispatching rules is dependent on specific fab characteristics. However, several dispatching rules are found to be robust across performance measures. A simulation study of the Semiconductor & Microsystems Fabrication Laboratory (SMFL) at the Rochester Institute of Technology (RIT) is used to verify the results

    Online Simulation in Semiconductor Manufacturing

    Get PDF
    In semiconductor manufacturing discrete event simulation systems are quite established to support multiple planning decisions. During the recent years, the productivity is increasing by using simulation methods. The motivation for this thesis is to use online simulation not only for planning decisions, but also for a wide range of operational decisions. Therefore an integrated online simulation system for short term forecasting has been developed. The production environment is a mature high mix logic wafer fab. It has been selected because of its vast potential for performance improvement. In this thesis several aspects of online simulation will be addressed: The first aspect is the implementation of an online simulation system in semiconductor manufacturing. The general problem is to achieve a high speed, a high level of detail, and a high forecast accuracy. To resolve these problems, an online simulation system has been created. The simulation model has a high level of detail. It is created automatically from underling fab data. To create such a simulation model from fab data, additional problems related to the underlying data arise. The major parts are the data access, the data integration, and the data quality. These problems have been solved by using an integrated data model with several data extraction, data transformation, and data cleaning steps. The second aspect is related to the accuracy of online simulation. The overall problem is to increase the forecast horizon, increase the level of detail of the forecast and reduce the forecast error. To provide useful forecast results, the simulation model contains a high level of modeling details and a proper initialization. The influences on the forecast quality will be analyzed. The results show that the simulation forecast accuracy achieves good quality to predict future fab performance. The last aspect is to find ways to use simulation forecast results to improve the fab performance. Numerous applications have been identified. For each application a description is available. It contains the requirements of such a forecast, the decision variables, and background information. An application example shows, where a performance problem exists and how online simulation is able to resolve it. To further enhance the real time capability of online simulation, a major part is to investigate new ways to connect the simulation model with the wafer fab. For fab driven simulation, the simulation model and the real wafer fab run concurrently. The wafer fab provides several events to update the simulation during runtime. So the model is always synchronized with the real fab. It becomes possible to start a simulation run in real time. There is no further delay for data extraction, data transformation and model creation. A prototype for a single work center has been implemented to show the feasibility
    corecore