5,019 research outputs found

    Air Traffic Management Safety Challenges

    No full text
    The primary goal of the Air Traffic Management (ATM) system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. Safety analysts and aviation decision-makers have to make safety assessments based on statistically incomplete evidence. If future risks cannot be estimated with precision, then how is safety to be assured with traffic growth and operational/technical changes? What are the design implications for the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? ATM accident precursors arise from (eg) pilot/controller workload, miscommunication, and lack of upto- date information. Can these accident precursors confidently be ‘designed out’ by (eg) better system knowledge across ATM participants, automatic safety checks, and machine rather than voice communication? Future potentially hazardous situations could be as ‘messy’ in system terms as the Überlingen mid-air collision. Are ATM safety regulation policies fit for purpose: is it more and more difficult to innovate, to introduce new technologies and novel operational concepts? Must regulators be more active, eg more inspections and monitoring of real operational and organisational practices

    Modelling flexible thrust performance for trajectory prediction applications in ATM

    Get PDF
    Reduced thrust operations are of widespread use nowadays due to their inherit benefits for engine conservation. Therefore, in order to enable realistic simulation of air traffic management (ATM) scenarios for purposes such as noise and emissions assessment, a model for reduced thrust is required. This paper proposes a methodology for modelling flexible thrust by combining an assumed temperature (AT) polynomial model identified from manufacturer take-off performance data and public thrust models taken from typical ATM performance databases. The advantage of the proposed AT model is that it only depends on the take-off conditions —runway length, airport altitude, temperature, wind, etc. The results derived from this methodology were compared to simulation data obtained from manufacturer’s take-off performance tools and databases. This comparison revealed that the polynomial model provides AT estimations with sufficient accuracy for their use in ATM simulation. The Base of Aircraft Data (BADA) and the Aircraft Noise and Performance (ANP) database were chosen as representative of aircraft performance models commonly used in ATM simulation. It was observed that there is no significant degradation of the overall accuracy of their thrust models when using AT, while there is a correct capture of the corresponding thrust reduction.Peer ReviewedPostprint (published version

    Resource management in IP-based radio access networks

    Get PDF
    IP is being considered to be used in the Radio Access Network (RAN) of UMTS. It is of paramount importance to be able to provide good QoS guarantees to real time services in such an IP-based RAN. QoS in IP networks is most efficiently provided with Differentiated services (Diffserv). However, currently Diffserv mainly specifies Per Hop Behaviors (PHB). Proper mechanisms for admission control and resource reservation have not yet been defined. A new resource management concept in the IP-based RAN is needed to offer QoS guarantees to real time services. We investigate the current Diffserv mechanisms and contribute to development of a new resource management protocol. We focus on the load control algorithm [9], which is an attempt to solve the problem of admission control and resource reservation in IP-based networks. In this document we present some load control issues and propose to enhance the load control protocol with the Measurement Based Admission Control (MBAC) concept. With this enhancement the traffic load in the IP-based RAN can be estimated, since the ingress router in the network path can be notified by marking packets with the resource state information. With this knowledge, the ingress router can perform admission control to keep the IP-based RAN stable with a high utilization even in overload situations

    Galileo and EGNOS as an asset for UTM safety and security

    Get PDF
    GAUSS (Galileo-EGNOS as an Asset for UTM Safety and Security) is a H2020 project1 that aims at designing and developing high performance positioning systems for drones within the U-Space framework focusing on UAS (Unmanned Aircraft System) VLL (Very Low Level) operations. The key element within GAUSS is the integration and exploitation of Galileo and EGNOS exceptional features in terms of accuracy, integrity and security, which will be key assets for the safety of current and future drone operations. More concretely, high accuracy, authentication, precise timing (among others) are key GNSS (Global Navigation Satellite System) enablers of future integrated drone operations under UTM (UAS Traffic Management) operations, which in Europe will be deployed under U-Space [1]. The U-Space concept helps control, manage and integrate all UAS in the VLL airspace to ensure the security and efficiency of UAS operations. GAUSS will enable not only safe, timely and efficient operations but also coordination among a higher number of RPAS (Remotely Piloted Aircraft System) in the air with the appropriate levels of security, as it will improve anti-jamming and anti-spoofing capabilities through a multi-frequency and multi-constellation approach and Galileo authentication operations. The GAUSS system will be validated with two field trials in two different UTM real scenarios (in-land and sea) with the operation of a minimum of four UTM coordinated UAS from different types (fixed and rotary wing), manoeuvrability and EASA (European Aviation Safety Agency) operational categories. The outcome of the project will consist of Galileo-EGNOS based technological solutions to enhance safety and security levels in both, current UAS and future UTM operations. Increased levels of efficiency, reliability, safety, and security in UAS operations are key enabling features to foster the EU UAS regulation, market development and full acceptance by the society.Peer ReviewedPostprint (author's final draft

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • 

    corecore