696 research outputs found

    ATM Cash demand forecasting in an Indian Bank with chaos and deep learning

    Full text link
    This paper proposes to model chaos in the ATM cash withdrawal time series of a big Indian bank and forecast the withdrawals using deep learning methods. It also considers the importance of day-of-the-week and includes it as a dummy exogenous variable. We first modelled the chaos present in the withdrawal time series by reconstructing the state space of each series using the lag, and embedding dimension found using an auto-correlation function and Cao's method. This process converts the uni-variate time series into multi variate time series. The "day-of-the-week" is converted into seven features with the help of one-hot encoding. Then these seven features are augmented to the multivariate time series. For forecasting the future cash withdrawals, using algorithms namely ARIMA, random forest (RF), support vector regressor (SVR), multi-layer perceptron (MLP), group method of data handling (GMDH), general regression neural network (GRNN), long short term memory neural network and 1-dimensional convolutional neural network. We considered a daily cash withdrawals data set from an Indian commercial bank. After modelling chaos and adding exogenous features to the data set, we observed improvements in the forecasting for all models. Even though the random forest (RF) yielded better Symmetric Mean Absolute Percentage Error (SMAPE) value, deep learning algorithms, namely LSTM and 1D CNN, showed similar performance compared to RF, based on t-test.Comment: 20 pages; 6 figures and 3 table

    Evaluation of ATM Cash Demand Process Factors Applied for Forecasting with CI Models

    Get PDF
    The purpose of cash management is to optimize distribution of cash. Effective cash management brings savings to retail banks that are related to: dormant cash reduction; reduced replenishment costs; decrease of cash preparation costs; reduction of cash insurance costs. Optimization of cash distribution for retail banking in ATM and branch networks requires estimation of cash demand/supply in the future. This estimation determines overall cash management efficiency: accurate cash demand estimation reduces bank overall costs. In order to estimate cash demand in the future, cash flow forecasting must be performed that is usually based on historical cash point (ATM or branch) cash flow data. Many factors that are uncertain and may change in time influence cash supply/demand process for cash point. These may change throughout cash points and are related to location, climate, holiday, celebration day and special event (such as salary days and sale of nearby supermarket) factors. Some factors affect cash demand periodically. Periodical factors form various seasonality in cash flow process: daily (related to intraday factors throughout the day), weekly (mostly related to weekend effects), monthly (related to payday) and yearly (related to climate seasons, tourist and student arrivals, periodical celebration days such as New Year) seasons. Uncertain (aperiodic) factors are mostly related to celebration days that do not occur periodically (such as Easter), structural break factors that form long term or permanent cash flow shift (new shopping mall near cash point, shift of working hours) and some may be temporal (reconstruction of nearby building that restricts cash point reachability). Those factors form cash flow process that contains linear or nonlinear trend, mixtures of various seasonal components (intraday, weekly, monthly yearly), level shifts and heteroscedastic uncertainty. So historical data-based forecasting models need to be able to approximate historical cash demand process as accurately as possible properly evaluating these factors and perform forecasting of cash flow in the future based on estimated empirical relationship.</p

    Improving the predictive accuracy of the cross-selling of consumer loans using deep learning networks

    Get PDF
    Traditionally most cross-selling models in retail banking use demographics information and interactions with marketing as input to statistical models or machine learning algorithms to predict whether a customer is willing to purchase a given financial product or not. We overcome with such limitation by building several models that also use several years of account transaction data. The objective of this study is to analysis credit card transactions of customers, in order to come up with a good prediction in cross-selling products. We use deep-learning algorithm to analyze almost 800,000 credit cards transactions. The results show that such unique data contains valuable information on the customers’ consumption behavior and it can significantly increase the predictive accuracy of a cross-selling model. In summary, we develop an auto-encoder to extract features from the transaction data and use them as input to a classifier. We demonstrate that such features also have predictive power that enhances the performance of the cross-selling model even further

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    Implementation of enterprise applications based on service oriented architecture

    Get PDF
    In current scenario, It has become important to integrate business and its Information system to achieve their competitiveness. Today a large number of projects fail in achieving business to IT integration. Distributed systems which are large in nature are difficult to develop due to their complexity. The Service Oriented Architecture (SOA) has been identified as the most suitable solution which facilitates to development of distributed systems. SOA helps in developing such distributed system as it supports modular design, inter-interoperability, application integration and software reuse. Enterprises systems which are large in nature need to focus on characteristics i.e. scalability and availability that enhance interoperability and integration of elements. An enterprise is an organization of resources i.e. people, computers, and machines, which performs a process. Enterprise Architecture (EA) is the discipline control resources of the enterprise. EA tasked to ensure Business-IT alignment. Enterprise SOA can be defined as a set of business-aligned IT-services that collectively address an organization's business processes (work-flow) and goals. Services can be orchestrated in many ways to support enterprise business process. Services and Processes are guided by the business architecture and it can be traced back to the business outcomes. Service Oriented Architecture (SOA) help in bridging the gap between business and IT by well defined, business-oriented services developed by using design principles, frameworks, pattern and methods. The objectives of EA and SOA are quite similar

    Distributed learning in sensor networks

    Get PDF

    Graduate Catalog, 1999-2002, New Jersey Institute of Technology

    Get PDF
    https://digitalcommons.njit.edu/coursecatalogs/1004/thumbnail.jp

    Production Optimization Indexed to the Market Demand Through Neural Networks

    Get PDF
    Connectivity, mobility and real-time data analytics are the prerequisites for a new model of intelligent production management that facilitates communication between machines, people and processes and uses technology as the main driver. Many works in the literature treat maintenance and production management in separate approaches, but there is a link between these areas, with maintenance and its actions aimed at ensuring the smooth operation of equipment to avoid unnecessary downtime in production. With the advent of technology, companies are rushing to solve their problems by resorting to technologies in order to fit into the most advanced technological concepts, such as industries 4.0 and 5.0, which are based on the principle of process automation. This approach brings together database technologies, making it possible to monitor the operation of equipment and have the opportunity to study patterns of data behavior that can alert us to possible failures. The present thesis intends to forecast the pulp production indexed to the stock market value.The forecast will be made by means of the pulp production variables of the presses and the stock exchange variables supported by artificial intelligence (AI) technologies, aiming to achieve an effective planning. To support the decision of efficient production management, in this thesis algorithms were developed and validated with from five pulp presses, as well as data from other sources, such as steel production and stock exchange, which were relevant to validate the robustness of the model. This thesis demonstrated the importance of data processing methods and that they have great relevance in the model input since they facilitate the process of training and testing the models. The chosen technologies demonstrated good efficiency and versatility in performing the prediction of the values of the variables of the equipment, also demonstrating robustness and optimization in computational processing. The thesis also presents proposals for future developments, namely in further exploration of these technologies, so that there are market variables that can calibrate production through forecasts supported on these same variables.Conectividade, mobilidade e análise de dados em tempo real são pré-requisitos para um novo modelo de gestão inteligente da produção que facilita a comunicação entre máquinas, pessoas e processos, e usa a tecnologia como motor principal. Muitos trabalhos na literatura tratam a manutenção e a gestão da produção em abordagens separadas, mas existe uma correlação entre estas áreas, sendo que a manutenção e as suas políticas têm como premissa garantir o bom funcionamento dos equipamentos de modo a evitar paragens desnecessárias na linha de produção. Com o advento da tecnologia há uma corrida das empresas para solucionar os seus problemas recorrendo às tecnologias, visando a sua inserção nos conceitos tecnológicos, mais avançados, tais como as indústrias 4.0 e 5.0, as quais têm como princípio a automatização dos processos. Esta abordagem junta as tecnologias de sistema de informação, sendo possível fazer o acompanhamento do funcionamento dos equipamentos e ter a possibilidade de realizar o estudo de padrões de comportamento dos dados que nos possam alertar para possíveis falhas. A presente tese pretende prever a produção da pasta de papel indexada às bolsas de valores. A previsão será feita por via das variáveis da produção da pasta de papel das prensas e das variáveis da bolsa de valores suportadas em tecnologias de artificial intelligence (IA), tendo como objectivo conseguir um planeamento eficaz. Para suportar a decisão de uma gestão da produção eficiente, na presente tese foram desenvolvidos algoritmos, validados em dados de cinco prensas de pasta de papel, bem como dados de outras fontes, tais como, de Produção de Aço e de Bolsas de Valores, os quais se mostraram relevantes para a validação da robustez dos modelos. A presente tese demonstrou a importância dos métodos de tratamento de dados e que os mesmos têm uma grande relevância na entrada do modelo, visto que facilita o processo de treino e testes dos modelos. As tecnologias escolhidas demonstraram uma boa eficiência e versatilidade na realização da previsão dos valores das variáveis dos equipamentos, demonstrando ainda robustez e otimização no processamento computacional. A tese apresenta ainda propostas para futuros desenvolvimentos, designadamente na exploração mais aprofundada destas tecnologias, de modo a que haja variáveis de mercado que possam calibrar a produção através de previsões suportadas nestas mesmas variáveis
    corecore