6,375 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Multiplexing regulated traffic streams: design and performance

    Get PDF
    The main network solutions for supporting QoS rely on traf- fic policing (conditioning, shaping). In particular, for IP networks the IETF has developed Intserv (individual flows regulated) and Diffserv (only ag- gregates regulated). The regulator proposed could be based on the (dual) leaky-bucket mechanism. This explains the interest in network element per- formance (loss, delay) for leaky-bucket regulated traffic. This paper describes a novel approach to the above problem. Explicitly using the correlation structure of the sources’ traffic, we derive approxi- mations for both small and large buffers. Importantly, for small (large) buffers the short-term (long-term) correlations are dominant. The large buffer result decomposes the traffic stream in a stream of constant rate and a periodic impulse stream, allowing direct application of the Brownian bridge approximation. Combining the small and large buffer results by a concave majorization, we propose a simple, fast and accurate technique to statistically multiplex homogeneous regulated sources. To address heterogeneous inputs, we present similarly efficient tech- niques to evaluate the performance of multiple classes of traffic, each with distinct characteristics and QoS requirements. These techniques, applica- ble under more general conditions, are based on optimal resource (band- width and buffer) partitioning. They can also be directly applied to set GPS (Generalized Processor Sharing) weights and buffer thresholds in a shared resource system

    A three-stage ATM switch with cell-level path allocation

    Get PDF
    A method is described for performing routing in three-stage asynchronous transfer mode (ATM) switches which feature multiple channels between the switch modules in adjacent stages. The method is suited to hardware implementation using parallelism to achieve a very short execution time. This allows cell-level routing to be performed, whereby routes are updated in each time slot. The algorithm allows a contention-free routing to be performed, so that buffering is not required in the intermediate stage. An algorithm with this property, which preserves the cell sequence, is referred to as a path allocation algorithm. A detailed description of the necessary hardware is presented. This hardware uses a novel circuit to count the number of cells requesting each output module, it allocates a path through the intermediate stage of the switch to each cell, and it generates a routing tag for each cell, indicating the path assigned to it. The method of routing tag assignment described employs a nonblocking copy network. The use of highly parallel hardware reduces the clock rate required of the circuitry, for a given-switch size. The performance of ATM switches using this path allocation algorithm has been evaluated by simulation, and is described

    Maximizing Energy Efficiency in Multiple Access Channels by Exploiting Packet Dropping and Transmitter Buffering

    Get PDF
    Quality of service (QoS) for a network is characterized in terms of various parameters specifying packet delay and loss tolerance requirements for the application. The unpredictable nature of the wireless channel demands for application of certain mechanisms to meet the QoS requirements. Traditionally, medium access control (MAC) and network layers perform these tasks. However, these mechanisms do not take (fading) channel conditions into account. In this paper, we investigate the problem using cross layer techniques where information flow and joint optimization of higher and physical layer is permitted. We propose a scheduling scheme to optimize the energy consumption of a multiuser multi-access system such that QoS constraints in terms of packet loss are fulfilled while the system is able to maximize the advantages emerging from multiuser diversity. Specifically, this work focuses on modeling and analyzing the effects of packet buffering capabilities of the transmitter on the system energy for a packet loss tolerant application. We discuss low complexity schemes which show comparable performance to the proposed scheme. The numerical evaluation reveals useful insights about the coupling effects of different QoS parameters on the system energy consumption and validates our analytical results.Comment: in IEEE trans. Wireless communications, 201

    Virtual lines, a deadlock-free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper, we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic, it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable of fulfilling these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock-free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel FIFO's, each representing a virtual line. In this way, we not only have solved the problem of head of line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks, it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual line concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology

    Virtual lines, a deadlock free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable to fulfil these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel fifos, each representing a virtual line. In this way we not only have solved the problem of Head Of Line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual lines concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology

    Low-complexity medium access control protocols for QoS support in third-generation radio access networks

    Get PDF
    One approach to maximizing the efficiency of medium access control (MAC) on the uplink in a future wideband code-division multiple-access (WCDMA)-based third-generation radio access network, and hence maximize spectral efficiency, is to employ a low-complexity distributed scheduling control approach. The maximization of spectral efficiency in third-generation radio access networks is complicated by the need to provide bandwidth-on-demand to diverse services characterized by diverse quality of service (QoS) requirements in an interference limited environment. However, the ability to exploit the full potential of resource allocation algorithms in third-generation radio access networks has been limited by the absence of a metric that captures the two-dimensional radio resource requirement, in terms of power and bandwidth, in the third-generation radio access network environment, where different users may have different signal-to-interference ratio requirements. This paper presents a novel resource metric as a solution to this fundamental problem. Also, a novel deadline-driven backoff procedure has been presented as the backoff scheme of the proposed distributed scheduling MAC protocols to enable the efficient support of services with QoS imposed delay constraints without the need for centralized scheduling. The main conclusion is that low-complexity distributed scheduling control strategies using overload avoidance/overload detection can be designed using the proposed resource metric to give near optimal performance and thus maintain a high spectral efficiency in third-generation radio access networks and that importantly overload detection is superior to overload avoidance

    Design of a transport coding scheme for high-quality video over ATM networks

    Get PDF
    Caption title.Includes bibliographical references (p. 38-39).Supported by ARPA. F30602-92-C-0030 Supported by the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology. DAAH04-95-1-0103V. Parthasarathy, J.W. Modestino and K.S. Vastola
    corecore