3,732 research outputs found

    EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers

    Get PDF
    Several models defining different types of cognitive human behaviour are available. For this work, we have selected the Skill, Rule and Knowledge (SRK) model proposed by Rasmussen in 1983. This model is currently broadly used in safety critical domains, such as the aviation. Nowadays, there are no tools able to assess at which level of cognitive control the operator is dealing with the considered task, that is if he/she is performing the task as an automated routine (skill level), as procedures-based activity (rule level), or as a problem-solving process (knowledge level). Several studies tried to model the SRK behaviours from a Human Factor perspective. Despite such studies, there are no evidences in which such behaviours have been evaluated from a neurophysiological point of view, for example, by considering brain activity variations across the different SRK levels. Therefore, the proposed study aimed to investigate the use of neurophysiological signals to assess the cognitive control behaviours accordingly to the SRK taxonomy. The results of the study, performed on 37 professional Air Traffic Controllers, demonstrated that specific brain features could characterize and discriminate the different SRK levels, therefore enabling an objective assessment of the degree of cognitive control behaviours in realistic setting

    Multi-scale analysis of the European airspace using network community detection

    Get PDF
    We show that the European airspace can be represented as a multi-scale traffic network whose nodes are airports, sectors, or navigation points and links are defined and weighted according to the traffic of flights between the nodes. By using a unique database of the air traffic in the European airspace, we investigate the architecture of these networks with a special emphasis on their community structure. We propose that unsupervised network community detection algorithms can be used to monitor the current use of the airspaces and improve it by guiding the design of new ones. Specifically, we compare the performance of three community detection algorithms, also by using a null model which takes into account the spatial distance between nodes, and we discuss their ability to find communities that could be used to define new control units of the airspace.Comment: 22 pages, 14 figure

    Resource dimensioning through buffer sampling

    Get PDF
    Link dimensioning, i.e., selecting a (minimal) link capacity such that the users’ performance requirements are met, is a crucial component of network design. It requires insight into the interrelationship among the traffic offered (in terms of the mean offered load , but also its fluctuation around the mean, i.e., ‘burstiness’), the envisioned performance level, and the capacity needed. We first derive, for different performance criteria, theoretical dimensioning formulas that estimate the required capacity cc as a function of the input traffic and the performance target. For the special case of Gaussian input traffic, these formulas reduce to c=M+αVc = M + \alpha V, where directly relates to the performance requirement (as agreed upon in a service level agreement) and VV reflects the burstiness (at the timescale of interest). We also observe that Gaussianity applies for virtually all realistic scenarios; notably, already for a relatively low aggregation level, the Gaussianity assumption is justified.\ud As estimating MM is relatively straightforward, the remaining open issue concerns the estimation of VV. We argue that particularly if corresponds to small time-scales, it may be inaccurate to estimate it directly from the traffic traces. Therefore, we propose an indirect method that samples the buffer content, estimates the buffer content distribution, and ‘inverts’ this to the variance. We validate the inversion through extensive numerical experiments (using a sizeable collection of traffic traces from various representative locations); the resulting estimate of VV is then inserted in the dimensioning formula. These experiments show that both the inversion and the dimensioning formula are remarkably accurate

    Satellite system performance assessment for in-flight entertainment and air traffic control

    Get PDF
    Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. However, the development of a dedicated satellite system for ATS (Air Traffic Services) and AOC (Airline Operational Communications) seems to be a long-term perspective. The objective of the presented system design is to provide both passenger application traffic access (Internet, GSM) and a high-reliability channel for aeronautical applications using the same satellite links. Due to the constraints in capacity and radio bandwidth allocation, very high frequencies (above 20 GHz) are considered here. The corresponding design implications for the air interface are taken into account and access performances are derived using a dedicated simulation model. Some preliminary results are shown in this paper to demonstrate the technical feasibility of such system design with increased capacity. More details and the open issues will be studied in the future of this research work

    Rare event analysis of communication networks

    Get PDF
    corecore