7 research outputs found

    Design and analysis of efficient and secure elliptic curve cryptoprocessors

    Get PDF
    Elliptic Curve Cryptosystems have attracted many researchers and have been included in many standards such as IEEE, ANSI, NIST, SEC and WTLS. The ability to use smaller keys and computationally more efficient algorithms compared with earlier public key cryptosystems such as RSA and ElGamal are two main reasons why elliptic curve cryptosystems are becoming more popular. They are considered to be particularly suitable for implementation on smart cards or mobile devices. Power Analysis Attacks on such devices are considered serious threat due to the physical characteristics of these devices and their use in potentially hostile environments. This dissertation investigates elliptic curve cryptoprocessor architectures for curves defined over GF(2m) fields. In this dissertation, new architectures that are suitable for efficient computation of scalar multiplications with resistance against power analysis attacks are proposed and their performance evaluated. This is achieved by exploiting parallelism and randomized processing techniques. Parallelism and randomization are controlled at different levels to provide more efficiency and security. Furthermore, the proposed architectures are flexible enough to allow designers tailor performance and hardware requirements according to their performance and cost objectives. The proposed architectures have been modeled using VHDL and implemented on FPGA platform

    A Microprocessor based hybrid system for digital error correction

    Get PDF
    The design of a microprocessor based hybrid system for digital error correction is presented. It is shown that such a system allows for implementation of several cyclic codes at a variety of throughput rates providing variable degrees of error correction depending on current user requirements. The theoretical basis for encoding and decoding of binary BCH codes is reviewed. Design and implementation of system hardware and software are described. A method for injection of independent bit errors with controllable statistics into the system is developed, and its accuracy verified by computer simulation. This method of controllable error injection is used to test performance of the designed system. In analysis, these results demonstrate the flexibility of operation provided by the hybrid nature of the system. Finally, potential applications and modifications are presented to reinforce the wide applicability of the system described in this thesis

    Applications of reprogrammability in algorithm acceleration

    Get PDF
    This doctoral thesis consists of an introductory part and eight appended publications, which deal with hardware-based reprogrammability in algorithm acceleration with a specific emphasis on the possibilities offered by modern large-scale Field Programmable Gate Arrays (FPGAs) in computationally demanding applications. The historical evolution of both the theoretical and technological paths culminating in the introduction of reprogrammable logic devices is first outlined. This is followed by defining the commonly used terms in the thesis. The reprogrammable logic market is surveyed, and the architectural structures and the technological reasonings behind them are described in detail. As reprogrammable logic lies between Application Specific Integrated Circuits (ASICs) and general-purpose microprocessors in the implementation spectrum of electronics systems, special attention has been paid to differentiate these three implementation approaches. This has been done to emphasize, that reprogrammable logic offers much more than just a low-volume replacement for ASICs. Design systems for reprogrammable logic are investigated, as the learning curve associated with them is the main hurdle for software-oriented designers for using reprogrammable logic devices. The theoretically important topic of partial reprogrammability is described in detail, but it is concluded, that the practical problems in designing viable development platforms for partially reprogrammable systems will hinder its wide-spread adoption. The main technical, design-oriented, and economic applicability factors of reprogrammable logic are laid out. The main advantages of reprogrammable logic are their suitability for fine-grained bit-level parallelizable computing with a short time-to-market and low upfront costs. It is also concluded, that the main opportunities for reprogrammable logic lie in the potential of high-level design systems, and the ever-growing ASIC design gap. On the other hand, most power-conscious mass-market portable products do not seem to offer major new market potential for reprogrammable logic. The appended publications are examined and compared to contemporaneous research at other research institutions. The conclusion is that for relatively wide classes of well-defined computation problems, reprogrammable logic offers a more efficient solution than a software-centered approach, with a much shorter production cycle than is the case with ASICs.reviewe

    Acta Scientiarum Mathematicarum : Tomus 56. Fasc. 3-4.

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore