60 research outputs found

    Multi-robot coordination using flexible setplays : applications in RoboCup's simulation and middle-size leagues

    Get PDF
    Tese de Doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Coordination methodologies applied to RoboCup : a graphical definition of setplays

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Belief-Desire-Intention in RoboCup

    Get PDF
    The Belief-Desire-Intention (BDI) model of a rational agent proposed by Bratman has strongly influenced the research of intelligent agents in Multi-Agent Systems (MAS). Jennings extended Bratman’s concept of a single rational agent into MAS in the form of joint-intention and joint-responsibility. Kitano et al. initiated RoboCup Soccer Simulation as a standard problem in MAS analogous to the Blocks World problem in traditional AI. This has motivated many researchers from various areas of studies such as machine learning, planning, and intelligent agent research. The first RoboCup team to incorporate the BDI concept is ATHumboldt98 team by Burkhard et al. In this thesis we present a novel collaborative BDI architecture modeled for RoboCup 2D Soccer Simulation called the TA09 team which is based on Bratman’s rational agent, influenced by Cohen and Levesque’s commitment, and incorporating Jennings’ joint-intention. The TA09 team features observation-based coordination, layered planning, and dynamic formation positioning

    Multiagent reactive plan application learning in dynamic environments

    Get PDF

    Second Workshop on Modelling of Objects, Components and Agents

    Get PDF
    This report contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'02), August 26-27, 2002.The workshop is organized by the 'Coloured Petri Net' Group at the University of Aarhus, Denmark and the 'Theoretical Foundations of Computer Science' Group at the University of Hamburg, Germany. The homepage of the workshop is: http://www.daimi.au.dk/CPnets/workshop02

    Multirobot Systems: A Classification Focused on Coordination

    Full text link

    USING COEVOLUTION IN COMPLEX DOMAINS

    Get PDF
    Genetic Algorithms is a computational model inspired by Darwin's theory of evolution. It has a broad range of applications from function optimization to solving robotic control problems. Coevolution is an extension of Genetic Algorithms in which more than one population is evolved at the same time. Coevolution can be done in two ways: cooperatively, in which populations jointly try to solve an evolutionary problem, or competitively. Coevolution has been shown to be useful in solving many problems, yet its application in complex domains still needs to be demonstrated.Robotic soccer is a complex domain that has a dynamic and noisy environment. Many Reinforcement Learning techniques have been applied to the robotic soccer domain, since it is a great test bed for many machine learning methods. However, the success of Reinforcement Learning methods has been limited due to the huge state space of the domain. Evolutionary Algorithms have also been used to tackle this domain; nevertheless, their application has been limited to a small subset of the domain, and no attempt has been shown to be successful in acting on solving the whole problem.This thesis will try to answer the question of whether coevolution can be applied successfully to complex domains. Three techniques are introduced to tackle the robotic soccer problem. First, an incremental learning algorithm is used to achieve a desirable performance of some soccer tasks. Second, a hierarchical coevolution paradigm is introduced to allow coevolution to scale up in solving the problem. Third, an orchestration mechanism is utilized to manage the learning processes

    Making friends on the fly : advances in ad hoc teamwork

    Get PDF
    textGiven the continuing improvements in design and manufacturing processes in addition to improvements in artificial intelligence, robots are being deployed in an increasing variety of environments for longer periods of time. As the number of robots grows, it is expected that they will encounter and interact with other robots. Additionally, the number of companies and research laboratories producing these robots is increasing, leading to the situation where these robots may not share a common communication or coordination protocol. While standards for coordination and communication may be created, we expect that any standards will lag behind the state-of-the-art protocols and robots will need to additionally reason intelligently about their teammates with limited information. This problem motivates the area of ad hoc teamwork in which an agent may potentially cooperate with a variety of teammates in order to achieve a shared goal. We argue that agents that effectively reason about ad hoc teamwork need to exhibit three capabilities: 1) robustness to teammate variety, 2) robustness to diverse tasks, and 3) fast adaptation. This thesis focuses on addressing all three of these challenges. In particular, this thesis introduces algorithms for quickly adapting to unknown teammates that enable agents to react to new teammates without extensive observations. The majority of existing multiagent algorithms focus on scenarios where all agents share coordination and communication protocols. While previous research on ad hoc teamwork considers some of these three challenges, this thesis introduces a new algorithm, PLASTIC, that is the first to address all three challenges in a single algorithm. PLASTIC adapts quickly to unknown teammates by reusing knowledge it learns about previous teammates and exploiting any expert knowledge available. Given this knowledge, PLASTIC selects which previous teammates are most similar to the current ones online and uses this information to adapt to their behaviors. This thesis introduces two instantiations of PLASTIC. The first is a model-based approach, PLASTIC-Model, that builds models of previous teammates' behaviors and plans online to determine the best course of action. The second uses a policy-based approach, PLASTIC-Policy, in which it learns policies for cooperating with past teammates and selects from among these policies online. Furthermore, we introduce a new transfer learning algorithm, TwoStageTransfer, that allows transferring knowledge from many past teammates while considering how similar each teammate is to the current ones. We theoretically analyze the computational tractability of PLASTIC-Model in a number of scenarios with unknown teammates. Additionally, we empirically evaluate PLASTIC in three domains that cover a spread of possible settings. Our evaluations show that PLASTIC can learn to communicate with unknown teammates using a limited set of messages, coordinate with externally-created teammates that do not reason about ad hoc teams, and act intelligently in domains with continuous states and actions. Furthermore, these evaluations show that TwoStageTransfer outperforms existing transfer learning algorithms and enables PLASTIC to adapt even better to new teammates. We also identify three dimensions that we argue best describe ad hoc teamwork scenarios. We hypothesize that these dimensions are useful for analyzing similarities among domains and determining which can be tackled by similar algorithms in addition to identifying avenues for future research. The work presented in this thesis represents an important step towards enabling agents to adapt to unknown teammates in the real world. PLASTIC significantly broadens the robustness of robots to their teammates and allows them to quickly adapt to new teammates by reusing previously learned knowledge.Computer Science

    Perceção e arquitectura de software para robótica móvel

    Get PDF
    Doutoramento em Ciências da ComputaçãoWhen developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.Durante o desenvolvimento de software para robôs autónomos móveis, e inevitavelmente necessário lidar com algum tipo de perceção. Al em disso, ao lidar com agentes que possuem algum tipo de raciocínio para executar as suas ações, há a necessidade de modelar o ambiente e o estado interno do robô de forma a representar o cenário onde o robô opera. Inserido no grupo ATRI, integrado na unidade de investigação IEETA da Universidade de Aveiro, este trabalho usa dois dos projetos do grupo como plataformas de teste, particularmente no cenário de futebol robótico com robôs reais. Com o principal objetivo de desenvolver algoritmos para fusão sensorial e de informação que possam ser usados eficazmente nestas equipas, v arias abordagens de estado da arte foram estudadas, implementadas e adaptadas para cada tipo de robôs. No âmbito da equipa de RoboCup MSL, CAMBADA, o principal foco foi a perceção da bola e obstáculos, com a criação de modelos capazes de providenciar informação estendida para que o raciocino do robô possa ser cada vez mais eficaz. Para o alcançar, v arias metodologias foram analisadas, implementadas, comparadas e melhoradas. Em relação a bola, foi efetuada uma análise de metodologias de filtragem para estabilização da sua posição e estimação da sua velocidade. Tendo o guarda-redes em mente, foi também realizado trabalho para providenciar informação de bolas no ar. Quanto aos obstáculos, foi criada uma nova definição para a forma como são detetados pela visão e para o tipo de informação fornecida, bem como uma metodologia para identificar quais dos obstáculos são colegas de equipa. Além disso foi desenvolvido um algoritmo de rastreamento que, no final, atribui um identicador único a cada obstáculo. Associado a melhoria na perceção dos obstáculos foi criado um novo algoritmo para realizar desvio reativo de obstáculos. No contexto da equipa de RoboCup SPL, Portuguese Team, al em da inevitável adaptação de vários dos algoritmos j a desenvolvidos para fusão sensorial e de informação, tendo em conta que foi recentemente criada, o objetivo foi criar uma arquitetura sustentável de software que possa ser a base para futuro desenvolvimento modular. A arquitetura de software criada e baseada numa série de processos diferentes e métodos de comunicação entre eles. Todos os processos foram criados ou adaptados para a nova arquitetura e um conjunto base de papeis e comportamentos foi definido para obter uma framework funcional base. Em termos de perceção, o principal foco foi a definição de um modelo de projeção e extração de pose da câmara que consiga providenciar informação em coordenadas métricas. O segundo objetivo principal era adaptar o algoritmo de localização da CAMBADA para funcionar nos robôs NAO, considerando todas as limitações apresentadas quando comparando com a equipa MSL, principalmente em termos de recursos computacionais. Um conjunto de ferramentas de suporte foram desenvolvidas ou melhoradas para auxiliar o teste e desenvolvimento em ambas as equipas. Em geral, o trabalho desenvolvido durante esta tese melhorou o desempenho da equipas durante os jogos e também a eficácia da equipa de programação durante as fases de desenvolvimento e teste
    corecore