46,806 research outputs found

    Comment on `A simple explanation of the non-appearance of physical gluons and quarks'

    Get PDF
    In a recent paper by Johan Hansson [hep-ph/0208137] it is claimed that the non-appearance of quarks and gluons as physical particles is an automatic result of the nonabelian nature of the color interaction in quantum chromodynamics. It is shown that the arguments given by Hansson are insufficient to support his claim by giving simple counter arguments.Comment: 3 pages, LATE

    Focusing of high-energy particles in the electrostatic field of a homogeneously charged sphere and the effective momentum approximation

    Get PDF
    The impact of the strongly attractive electromagnetic field of heavy nuclei on electrons in quasi-elastic (e,e') scattering is often accounted for by the effective momentum approximation. This method is a plane wave Born approximation which takes the twofold effect of the attractive nucleus on initial and final state electrons into account, namely the modification of the electron momentum in the vicinity of the nucleus, and the focusing of electrons towards the nuclear region leading to an enhancement of the corresponding wave function amplitudes. The focusing effect due to the attractive Coulomb field of a homogeneously charged sphere on a classical ensemble of charged particles incident on the field is calculated in the highly relativistic limit and compared to results obtained from exact solutions of the Dirac equation. The result is relevant for the theoretical foundation of the effective momentum approximation and describes the high energy behavior of the amplitude of continuum Dirac waves in the potential of a homogeneously charged sphere. Our findings indicate that the effective momentum approximation is a useful approximation for the calculation of Coulomb corrections in (e,e') scattering off heavy nuclei for sufficiently high electron energies and momentum transfer.Comment: 16 pages, 9 figures, LATEX, some references adde

    Surface instabilities in granular matter and ion-sputtered surfaces

    Full text link
    We apply a theoretical approach, originally introduced to describe aeolian ripples formation in sandy deserts, to the study of surface instability in ion sputtered surfaces. The two phenomena are distinct by several orders of magnitudes and by several physical mechanisms, but they obey to similar geometrical constraints and therefore they can be described by means of the same approach. This opens a novel conceptual framework for the study of the dynamical surface roughening and ripple formation on crystal and amorphous surfaces during ion sputtering.Comment: 14 pages, 3 figure
    • …
    corecore