99 research outputs found

    Automatic Framework to Aid Therapists to Diagnose Children who Stutter

    Get PDF

    CAPT๋ฅผ ์œ„ํ•œ ๋ฐœ์Œ ๋ณ€์ด ๋ถ„์„ ๋ฐ CycleGAN ๊ธฐ๋ฐ˜ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ธ๋ฌธ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ธ์ง€๊ณผํ•™์ „๊ณต,2020. 2. ์ •๋ฏผํ™”.Despite the growing popularity in learning Korean as a foreign language and the rapid development in language learning applications, the existing computer-assisted pronunciation training (CAPT) systems in Korean do not utilize linguistic characteristics of non-native Korean speech. Pronunciation variations in non-native speech are far more diverse than those observed in native speech, which may pose a difficulty in combining such knowledge in an automatic system. Moreover, most of the existing methods rely on feature extraction results from signal processing, prosodic analysis, and natural language processing techniques. Such methods entail limitations since they necessarily depend on finding the right features for the task and the extraction accuracies. This thesis presents a new approach for corrective feedback generation in a CAPT system, in which pronunciation variation patterns and linguistic correlates with accentedness are analyzed and combined with a deep neural network approach, so that feature engineering efforts are minimized while maintaining the linguistically important factors for the corrective feedback generation task. Investigations on non-native Korean speech characteristics in contrast with those of native speakers, and their correlation with accentedness judgement show that both segmental and prosodic variations are important factors in a Korean CAPT system. The present thesis argues that the feedback generation task can be interpreted as a style transfer problem, and proposes to evaluate the idea using generative adversarial network. A corrective feedback generation model is trained on 65,100 read utterances by 217 non-native speakers of 27 mother tongue backgrounds. The features are automatically learnt in an unsupervised way in an auxiliary classifier CycleGAN setting, in which the generator learns to map a foreign accented speech to native speech distributions. In order to inject linguistic knowledge into the network, an auxiliary classifier is trained so that the feedback also identifies the linguistic error types that were defined in the first half of the thesis. The proposed approach generates a corrected version the speech using the learners own voice, outperforming the conventional Pitch-Synchronous Overlap-and-Add method.์™ธ๊ตญ์–ด๋กœ์„œ์˜ ํ•œ๊ตญ์–ด ๊ต์œก์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๊ณ ์กฐ๋˜์–ด ํ•œ๊ตญ์–ด ํ•™์Šต์ž์˜ ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์Œ์„ฑ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ์ ์šฉํ•œ ์ปดํ“จํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐœ์Œ ๊ต์œก(Computer-Assisted Pronunciation Training; CAPT) ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋˜ํ•œ ์ ๊ทน์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ˜„์กดํ•˜๋Š” ํ•œ๊ตญ์–ด ๋งํ•˜๊ธฐ ๊ต์œก ์‹œ์Šคํ…œ์€ ์™ธ๊ตญ์ธ์˜ ํ•œ๊ตญ์–ด์— ๋Œ€ํ•œ ์–ธ์–ดํ•™์  ํŠน์ง•์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ์œผ๋ฉฐ, ์ตœ์‹  ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ  ๋˜ํ•œ ์ ์šฉ๋˜์ง€ ์•Š๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๊ฐ€๋Šฅํ•œ ์›์ธ์œผ๋กœ์จ๋Š” ์™ธ๊ตญ์ธ ๋ฐœํ™” ํ•œ๊ตญ์–ด ํ˜„์ƒ์— ๋Œ€ํ•œ ๋ถ„์„์ด ์ถฉ๋ถ„ํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค๋Š” ์ , ๊ทธ๋ฆฌ๊ณ  ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์–ด๋„ ์ด๋ฅผ ์ž๋™ํ™”๋œ ์‹œ์Šคํ…œ์— ๋ฐ˜์˜ํ•˜๊ธฐ์—๋Š” ๊ณ ๋„ํ™”๋œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์ด ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ CAPT ๊ธฐ์ˆ  ์ „๋ฐ˜์ ์œผ๋กœ๋Š” ์‹ ํ˜ธ์ฒ˜๋ฆฌ, ์šด์œจ ๋ถ„์„, ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•๊ณผ ๊ฐ™์€ ํŠน์ง• ์ถ”์ถœ์— ์˜์กดํ•˜๊ณ  ์žˆ์–ด์„œ ์ ํ•ฉํ•œ ํŠน์ง•์„ ์ฐพ๊ณ  ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ถœํ•˜๋Š” ๋ฐ์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•œ ์‹ค์ •์ด๋‹ค. ์ด๋Š” ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ด ๊ณผ์ • ๋˜ํ•œ ๋ฐœ์ „์˜ ์—ฌ์ง€๊ฐ€ ๋งŽ๋‹ค๋Š” ๋ฐ”๋ฅผ ์‹œ์‚ฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋จผ์ € CAPT ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์— ์žˆ์–ด ๋ฐœ์Œ ๋ณ€์ด ์–‘์ƒ๊ณผ ์–ธ์–ดํ•™์  ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์™ธ๊ตญ์ธ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ๊ณผ ํ•œ๊ตญ์–ด ์›์–ด๋ฏผ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ์„ ๋Œ€์กฐํ•˜๊ณ  ์ฃผ์š”ํ•œ ๋ณ€์ด๋ฅผ ํ™•์ธํ•œ ํ›„, ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์˜์‚ฌ์†Œํ†ต์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š”๋„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ข…์„ฑ ์‚ญ์ œ์™€ 3์ค‘ ๋Œ€๋ฆฝ์˜ ํ˜ผ๋™, ์ดˆ๋ถ„์ ˆ ๊ด€๋ จ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ์— ์šฐ์„ ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ต์ •๋œ ํ”ผ๋“œ๋ฐฑ์„ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ CAPT ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ๊ณผ์ œ๊ฐ€ ๋ฐœํ™”์˜ ์Šคํƒ€์ผ ๋ณ€ํ™”์˜ ๋ฌธ์ œ๋กœ ํ•ด์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ณด์•˜์œผ๋ฉฐ, ์ƒ์„ฑ์  ์ ๋Œ€ ์‹ ๊ฒฝ๋ง (Cycle-consistent Generative Adversarial Network; CycleGAN) ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. GAN ๋„คํŠธ์›Œํฌ์˜ ์ƒ์„ฑ๋ชจ๋ธ์€ ๋น„์›์–ด๋ฏผ ๋ฐœํ™”์˜ ๋ถ„ํฌ์™€ ์›์–ด๋ฏผ ๋ฐœํ™” ๋ถ„ํฌ์˜ ๋งคํ•‘์„ ํ•™์Šตํ•˜๋ฉฐ, Cycle consistency ์†์‹คํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœํ™”๊ฐ„ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•จ๊ณผ ๋™์‹œ์— ๊ณผ๋„ํ•œ ๊ต์ •์„ ๋ฐฉ์ง€ํ•˜์˜€๋‹ค. ๋ณ„๋„์˜ ํŠน์ง• ์ถ”์ถœ ๊ณผ์ •์ด ์—†์ด ํ•„์š”ํ•œ ํŠน์ง•๋“ค์ด CycleGAN ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ๋ฌด๊ฐ๋… ๋ฐฉ๋ฒ•์œผ๋กœ ์Šค์Šค๋กœ ํ•™์Šต๋˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์–ธ์–ด ํ™•์žฅ์ด ์šฉ์ดํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์–ธ์–ดํ•™์  ๋ถ„์„์—์„œ ๋“œ๋Ÿฌ๋‚œ ์ฃผ์š”ํ•œ ๋ณ€์ด๋“ค ๊ฐ„์˜ ์šฐ์„ ์ˆœ์œ„๋Š” Auxiliary Classifier CycleGAN ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ CycleGAN์— ์ง€์‹์„ ์ ‘๋ชฉ์‹œ์ผœ ํ”ผ๋“œ๋ฐฑ ์Œ์„ฑ์„ ์ƒ์„ฑํ•จ๊ณผ ๋™์‹œ์— ํ•ด๋‹น ํ”ผ๋“œ๋ฐฑ์ด ์–ด๋–ค ์œ ํ˜•์˜ ์˜ค๋ฅ˜์ธ์ง€ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Š” ๋„๋ฉ”์ธ ์ง€์‹์ด ๊ต์ • ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ ๋‹จ๊ณ„๊นŒ์ง€ ์œ ์ง€๋˜๊ณ  ํ†ต์ œ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค๋Š” ๋ฐ์— ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ 27๊ฐœ์˜ ๋ชจ๊ตญ์–ด๋ฅผ ๊ฐ–๋Š” 217๋ช…์˜ ์œ ์˜๋ฏธ ์–ดํœ˜ ๋ฐœํ™” 65,100๊ฐœ๋กœ ํ”ผ๋“œ๋ฐฑ ์ž๋™ ์ƒ์„ฑ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ , ๊ฐœ์„  ์—ฌ๋ถ€ ๋ฐ ์ •๋„์— ๋Œ€ํ•œ ์ง€๊ฐ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ ํ•™์Šต์ž ๋ณธ์ธ์˜ ๋ชฉ์†Œ๋ฆฌ๋ฅผ ์œ ์ง€ํ•œ ์ฑ„ ๊ต์ •๋œ ๋ฐœ์Œ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์ธ ์Œ๋†’์ด ๋™๊ธฐ์‹ ์ค‘์ฒฉ๊ฐ€์‚ฐ (Pitch-Synchronous Overlap-and-Add) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์ƒ๋Œ€ ๊ฐœ์„ ๋ฅ  16.67%์ด ํ™•์ธ๋˜์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1. Motivation 1 1.1.1. An Overview of CAPT Systems 3 1.1.2. Survey of existing Korean CAPT Systems 5 1.2. Problem Statement 7 1.3. Thesis Structure 7 Chapter 2. Pronunciation Analysis of Korean Produced by Chinese 9 2.1. Comparison between Korean and Chinese 11 2.1.1. Phonetic and Syllable Structure Comparisons 11 2.1.2. Phonological Comparisons 14 2.2. Related Works 16 2.3. Proposed Analysis Method 19 2.3.1. Corpus 19 2.3.2. Transcribers and Agreement Rates 22 2.4. Salient Pronunciation Variations 22 2.4.1. Segmental Variation Patterns 22 2.4.1.1. Discussions 25 2.4.2. Phonological Variation Patterns 26 2.4.1.2. Discussions 27 2.5. Summary 29 Chapter 3. Correlation Analysis of Pronunciation Variations and Human Evaluation 30 3.1. Related Works 31 3.1.1. Criteria used in L2 Speech 31 3.1.2. Criteria used in L2 Korean Speech 32 3.2. Proposed Human Evaluation Method 36 3.2.1. Reading Prompt Design 36 3.2.2. Evaluation Criteria Design 37 3.2.3. Raters and Agreement Rates 40 3.3. Linguistic Factors Affecting L2 Korean Accentedness 41 3.3.1. Pearsons Correlation Analysis 41 3.3.2. Discussions 42 3.3.3. Implications for Automatic Feedback Generation 44 3.4. Summary 45 Chapter 4. Corrective Feedback Generation for CAPT 46 4.1. Related Works 46 4.1.1. Prosody Transplantation 47 4.1.2. Recent Speech Conversion Methods 49 4.1.3. Evaluation of Corrective Feedback 50 4.2. Proposed Method: Corrective Feedback as a Style Transfer 51 4.2.1. Speech Analysis at Spectral Domain 53 4.2.2. Self-imitative Learning 55 4.2.3. An Analogy: CAPT System and GAN Architecture 57 4.3. Generative Adversarial Networks 59 4.3.1. Conditional GAN 61 4.3.2. CycleGAN 62 4.4. Experiment 63 4.4.1. Corpus 64 4.4.2. Baseline Implementation 65 4.4.3. Adversarial Training Implementation 65 4.4.4. Spectrogram-to-Spectrogram Training 66 4.5. Results and Evaluation 69 4.5.1. Spectrogram Generation Results 69 4.5.2. Perceptual Evaluation 70 4.5.3. Discussions 72 4.6. Summary 74 Chapter 5. Integration of Linguistic Knowledge in an Auxiliary Classifier CycleGAN for Feedback Generation 75 5.1. Linguistic Class Selection 75 5.2. Auxiliary Classifier CycleGAN Design 77 5.3. Experiment and Results 80 5.3.1. Corpus 80 5.3.2. Feature Annotations 81 5.3.3. Experiment Setup 81 5.3.4. Results 82 5.4. Summary 84 Chapter 6. Conclusion 86 6.1. Thesis Results 86 6.2. Thesis Contributions 88 6.3. Recommendations for Future Work 89 Bibliography 91 Appendix 107 Abstract in Korean 117 Acknowledgments 120Docto

    Articulatory features for conversational speech recognition

    Get PDF

    Automatic Screening of Childhood Speech Sound Disorders and Detection of Associated Pronunciation Errors

    Full text link
    Speech disorders in children can affect their fluency and intelligibility. Delay in their diagnosis and treatment increases the risk of social impairment and learning disabilities. With the significant shortage of Speech and Language Pathologists (SLPs), there is an increasing interest in Computer-Aided Speech Therapy tools with automatic detection and diagnosis capability. However, the scarcity and unreliable annotation of disordered child speech corpora along with the high acoustic variations in the child speech data has impeded the development of reliable automatic detection and diagnosis of childhood speech sound disorders. Therefore, this thesis investigates two types of detection systems that can be achieved with minimum dependency on annotated mispronounced speech data. First, a novel approach that adopts paralinguistic features which represent the prosodic, spectral, and voice quality characteristics of the speech was proposed to perform segment- and subject-level classification of Typically Developing (TD) and Speech Sound Disordered (SSD) child speech using a binary Support Vector Machine (SVM) classifier. As paralinguistic features are both language- and content-independent, they can be extracted from an unannotated speech signal. Second, a novel Mispronunciation Detection and Diagnosis (MDD) approach was introduced to detect the pronunciation errors made due to SSDs and provide low-level diagnostic information that can be used in constructing formative feedback and a detailed diagnostic report. Unlike existing MDD methods where detection and diagnosis are performed at the phoneme level, the proposed method achieved MDD at the speech attribute level, namely the manners and places of articulations. The speech attribute features describe the involved articulators and their interactions when making a speech sound allowing a low-level description of the pronunciation error to be provided. Two novel methods to model speech attributes are further proposed in this thesis, a frame-based (phoneme-alignment) method leveraging the Multi-Task Learning (MTL) criterion and training a separate model for each attribute, and an alignment-free jointly-learnt method based on the Connectionist Temporal Classification (CTC) sequence to sequence criterion. The proposed techniques have been evaluated using standard and publicly accessible adult and child speech corpora, while the MDD method has been validated using L2 speech corpora

    Speech verification for computer assisted pronunciation training

    Get PDF
    Computer assisted pronunciation training (CAPT) is an approach that uses computer technology and computer-based resources in teaching and learning pronunciation. It is also part of computer assisted language learning (CALL) technology that has been widely applied to online learning platforms in the past years. This thesis deals with one of the central tasks in CAPT, i.e. speech veri- fication. The goal is to provide a framework that identifies pronunciation errors in speech data of second language (L2) learners and generates feedback with information and instruction for error correction. Furthermore, the framework is supposed to support the adaptation to new L1-L2 language pairs with minimal adjustment and modification. The central result is a novel approach to L2 speech verification, which combines both modern language technologies and linguistic expertise. For pronunciation verification, we select a set of L2 speech data, create alias phonemes from the errors annotated by linguists, then train an acoustic model with mixed L2 and gold standard data and perform HTK phoneme recognition to identify the error phonemes. For prosody verification, FD-PSOLA and Dynamic time warping are both applied to verify the differences in duration, pitch and stress. Feedback is generated for both verifications. Our feedback is presented to learners not only visually as with other existing CAPT systems, but also perceptually by synthesizing the learnerโ€™s own audio, e.g. for prosody verification, the gold standard prosody is transplanted onto the learnerโ€™s own voice. The framework is self-adaptable under semi-supervision, and requires only a certain amount of mixed gold standard and annotated L2 speech data for boot- strapping. Verified speech data is validated by linguists, annotated in case of wrong verification, and used in the next iteration of training. Mary Annotation Tool (MAT) is developed as an open-source component of MARYTTS for both annotating and validating. To deal with uncertain pauses and interruptions in L2 speech, the silence model in HTK is also adapted, and used in all components of the framework where forced alignment is required. Various evaluations are conducted that help us obtain insights into the applicability and potential of our CAPT system. The pronunciation verification shows high accuracy in both precision and recall, and encourages us to acquire more error-annotated L2 speech data to enhance the trained acoustic model. To test the effect of feedback, a progressive evaluation is carried out and it shows that our perceptual feedback helps learners realize their errors, which they could not otherwise observe from visual feedback and textual instructions. In order to im- prove the user interface, a questionnaire is also designed to collect the learnersโ€™ experiences and suggestions.Computer Assisted Pronunciation Training (CAPT) ist ein Ansatz, der mittels Computer und computergestรผtzten Ressourcen das Erlernen der korrekten Aussprache im Fremdsprachenunterricht erleichtert. Dieser Ansatz ist ein Teil der Computer Assisted Language Learning (CALL) Technologie, die seit mehreren Jahren auf Online-Lernplattformen hรคufig zum Einsatz kommt. Diese Arbeit ist der Sprachverifikation gewidmet, einer der zentralen Aufgaben innerhalb des CAPT. Das Ziel ist, ein Framework zur Identifikation von Aussprachefehlern zu entwickeln fรผrMenschen, die eine Fremdsprache (L2-Sprache) erlernen. Dabei soll Feedback mit fehlerspezifischen Informationen und Anweisungen fรผr eine richtige Aussprache erzeugt werden. Darรผber hinaus soll das Rahmenwerk die Anpassung an neue Sprachenpaare (L1-L2) mit minimalen Adaptationen und Modifikationen unterstรผtzen. Das zentrale Ergebnis ist ein neuartiger Ansatz fรผr die L2-Sprachprรผfung, der sowohl auf modernen Sprachtechnologien als auch auf corpuslinguistischen Ansรคtzen beruht. Fรผr die Ausspracheรผberprรผfung erstellen wir Alias-Phoneme aus Fehlern, die von Linguisten annotiert wurden. Dann trainieren wir ein akustisches Modell mit gemischten L2- und Goldstandarddaten und fรผhren eine HTK-Phonemerkennung3 aus, um die Fehlerphoneme zu identifizieren. Fรผr die Prosodieรผberprรผfung werden sowohl FD-PSOLA4 und Dynamic Time Warping angewendet, um die Unterschiede in der Dauer, Tonhรถhe und Betonung zwischen dem Gesprochenen und dem Goldstandard zu verifizieren. Feedbacks werden fรผr beide รœberprรผfungen generiert und den Lernenden nicht nur visuell prรคsentiert, so wie in anderen vorhandenen CAPT-Systemen, sondern auch perzeptuell vorgestellt. So wird unter anderem fรผr die Prosodieverifikation die Goldstandardprosodie auf die eigene Stimme des Lernenden รผbergetragen. Zur Anpassung des Frameworks an weitere L1-L2 Sprachdaten muss das System รผber Maschinelles Lernen trainiert werden. Da es sich um ein semi-รผberwachtes Lernverfahren handelt, sind nur eine gewisseMenge an gemischten Goldstandardund annotierten L2-Sprachdaten fรผr das Bootstrapping erforderlich. Verifizierte Sprachdaten werden von Linguisten validiert, im Falle einer falschen Verifizierung nochmals annotiert, und bei der nรคchsten Iteration des Trainings verwendet. Fรผr die Annotation und Validierung wurde das Mary Annotation Tool (MAT) als Open-Source-Komponente von MARYTTS entwickelt. Um mit unsicheren Pausen und Unterbrechungen in der L2-Sprache umzugehen, wurde auch das sogenannte Stillmodell in HTK angepasst und in allen Komponenten des Rahmenwerks verwendet, in denen Forced Alignment erforderlich ist. Unterschiedliche Evaluierungen wurden durchgefรผhrt, um Erkenntnisse รผber die Anwendungspotenziale und die Beschrรคnkungen des Systems zu gewinnen. Die Ausspracheรผberprรผfung zeigt eine hohe Genauigkeit sowohl bei der Prรคzision als auch beim Recall. Dadurch war es mรถglich weitere fehlerbehaftete L2-Sprachdaten zu verwenden, um somit das trainierte akustische Modell zu verbessern. Um die Wirkung des Feedbacks zu testen, wird eine progressive Auswertung durchgefรผhrt. Das Ergebnis zeigt, dass perzeptive Feedbacks dabei helfen, dass die Lernenden sogar Fehler erkennen, die sie nicht aus visuellen Feedbacks und Textanweisungen beobachten kรถnnen. Zudem wurden mittels Fragebogen die Erfahrungen und Anregungen der Benutzeroberflรคche der Lernenden gesammelt, um das System kรผnftig zu verbessern. 3 Hidden Markov Toolkit 4 Pitch Synchronous Overlap and Ad

    Exploring the use of Technology for Assessment and Intensive Treatment of Childhood Apraxia of Speech

    Get PDF
    Given the rapid advances in technology over the past decade, this thesis examines the potential for automatic speech recognition (ASR) technology to expedite the process of objective analysis of speech, particularly for lexical stress patterns in childhood apraxia of speech. This dissertation also investigates the potential for mobile technology to bridge the gap between current service delivery models in Australia and best practice treatment intensity for CAS. To address these two broad aims, this thesis describes three main projects. The first is a systematic literature review summarising the development, implementation and accuracy of automatic speech analysis tools when applied to evaluation and modification of childrenโ€™s speech production skills. Guided by the results of the systematic review, the second project presents data on the accuracy and clinical utility of a custom-designed lexical stress classification tool, designed as part of a multi-component speech analysis system for a mobile therapy application, Tabby Talks, for use with children with CAS. The third project is a randomised control trial exploring the effect of different types of feedback on response to intervention for children with CAS. The intervention was designed to specifically explore the feasibility and effectiveness of using an app equipped with ASR technology to provide feedback on speech production accuracy during home practice sessions, simulating the common service delivery model in Australia. The thesis concludes with a discussion of future directions for technology-based speech assessment and intensive speech production practice, guidelines for future development of therapy tools that include more game-based practice activities and the contexts in which children can be transferred from predominantly clinician-delivered augmented feedback to ASR-delivered right/wrong feedback and continue to make optimal gains in acquisition and retention of speech production targets

    Analyzing Prosody with Legendre Polynomial Coefficients

    Full text link
    This investigation demonstrates the effectiveness of Legendre polynomial coefficients representing prosodic contours within the context of two different tasks: nativeness classification and sarcasm detection. By making use of accurate representations of prosodic contours to answer fundamental linguistic questions, we contribute significantly to the body of research focused on analyzing prosody in linguistics as well as modeling prosody for machine learning tasks. Using Legendre polynomial coefficient representations of prosodic contours, we answer prosodic questions about differences in prosody between native English speakers and non-native English speakers whose first language is Mandarin. We also learn more about prosodic qualities of sarcastic speech. We additionally perform machine learning classification for both tasks, (achieving an accuracy of 72.3% for nativeness classification, and achieving 81.57% for sarcasm detection). We recommend that linguists looking to analyze prosodic contours make use of Legendre polynomial coefficients modeling; the accuracy and quality of the resulting prosodic contour representations makes them highly interpretable for linguistic analysis

    Pronunciation modelling in end-to-end text-to-speech synthesis

    Get PDF
    Sequence-to-sequence (S2S) models in text-to-speech synthesis (TTS) can achieve high-quality naturalness scores without extensive processing of text-input. Since S2S models have been proposed in multiple aspects of the TTS pipeline, the field has focused on embedding the pipeline toward End-to-End (E2E-) TTS where a waveform is predicted directly from a sequence of text or phone characters. Early work on E2ETTS in English, such as Char2Wav [1] and Tacotron [2], suggested that phonetisation (lexicon-lookup and/or G2P modelling) could be implicitly learnt in a text-encoder during training. The benefits of a learned text encoding include improved modelling of phonetic context, which make contextual linguistic features traditionally used in TTS pipelines redundant [3]. Subsequent work on E2E-TTS has since shown similar naturalness scores with text- or phone-input (e.g. as in [4]). Successful modelling of phonetic context has led some to question the benefit of using phone- instead of text-input altogether (see [5]). The use of text-input brings into question the value of the pronunciation lexicon in E2E-TTS. Without phone-input, a S2S encoder learns an implicit grapheme-tophoneme (G2P) model from text-audio pairs during training. With common datasets for E2E-TTS in English, I simulated implicit G2P models, finding increased error rates compared to a traditional, lexicon-based G2P model. Ultimately, successful G2P generalisation is difficult for some words (e.g. foreign words and proper names) since the knowledge to disambiguate their pronunciations may not be provided by the local grapheme context and may require knowledge beyond that contained in sentence-level text-audio sequences. When test stimuli were selected according to G2P difficulty, increased mispronunciations in E2E-TTS with text-input were observed. Following the proposed benefits of subword decomposition in S2S modelling in other language tasks (e.g. neural machine translation), the effects of morphological decomposition were investigated on pronunciation modelling. Learning of the French post-lexical phenomenon liaison was also evaluated. With the goal of an inexpensive, large-scale evaluation of pronunciation modelling, the reliability of automatic speech recognition (ASR) to measure TTS intelligibility was investigated. A re-evaluation of 6 years of results from the Blizzard Challenge was conducted. ASR reliably found similar significant differences between systems as paid listeners in controlled conditions in English. An analysis of transcriptions for words exhibiting difficult-to-predict G2P relations was also conducted. The E2E-ASR Transformer model used was found to be unreliable in its transcription of difficult G2P relations due to homophonic transcription and incorrect transcription of words with difficult G2P relations. A further evaluation of representation mixing in Tacotron finds pronunciation correction is possible when mixing text- and phone-inputs. The thesis concludes that there is still a place for the pronunciation lexicon in E2E-TTS as a pronunciation guide since it can provide assurances that G2P generalisation cannot
    • โ€ฆ
    corecore