82 research outputs found

    Optimizing Phylogenetic Supertrees Using Answer Set Programming

    Full text link
    The supertree construction problem is about combining several phylogenetic trees with possibly conflicting information into a single tree that has all the leaves of the source trees as its leaves and the relationships between the leaves are as consistent with the source trees as possible. This leads to an optimization problem that is computationally challenging and typically heuristic methods, such as matrix representation with parsimony (MRP), are used. In this paper we consider the use of answer set programming to solve the supertree construction problem in terms of two alternative encodings. The first is based on an existing encoding of trees using substructures known as quartets, while the other novel encoding captures the relationships present in trees through direct projections. We use these encodings to compute a genus-level supertree for the family of cats (Felidae). Furthermore, we compare our results to recent supertrees obtained by the MRP method.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Advanced Algorithms for Abstract Dialectical Frameworks based on Complexity Analysis of Subclasses and SAT Solving

    Get PDF
    dialectical frameworks (ADFs) constitute one of the most powerful formalisms in abstract argumentation. Their high computational complexity poses, however, certain challenges when designing efficient systems. In this paper, we tackle this issue by (i) analyzing the complexity of ADFs under structural restrictions, (ii) presenting novel algorithms which make use of these insights, and (iii) implementing these algorithms via (multiple) calls to SAT solvers. An empirical evaluation of the resulting implementation on ADF benchmarks generated from ICCMA competitions shows that our solver is able to outperform state-of-the-art ADF systems. (c) 2022 The Author(s). Published by Elsevier B.V.Peer reviewe

    Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders

    Get PDF
    We address the problem of causal discovery from data, making use of the recently proposed causal modeling framework of modular structural causal models (mSCM) to handle cycles, latent confounders and non-linearities. We introduce {\sigma}-connection graphs ({\sigma}-CG), a new class of mixed graphs (containing undirected, bidirected and directed edges) with additional structure, and extend the concept of {\sigma}-separation, the appropriate generalization of the well-known notion of d-separation in this setting, to apply to {\sigma}-CGs. We prove the closedness of {\sigma}-separation under marginalisation and conditioning and exploit this to implement a test of {\sigma}-separation on a {\sigma}-CG. This then leads us to the first causal discovery algorithm that can handle non-linear functional relations, latent confounders, cyclic causal relationships, and data from different (stochastic) perfect interventions. As a proof of concept, we show on synthetic data how well the algorithm recovers features of the causal graph of modular structural causal models.Comment: Accepted for publication in Conference on Uncertainty in Artificial Intelligence 201
    • …
    corecore