117 research outputs found

    Advances in Architectures and Tools for FPGAs and their Impact on the Design of Complex Systems for Particle Physics

    Get PDF
    The continual improvement of semiconductor technology has provided rapid advancements in device frequency and density. Designers of electronics systems for high-energy physics (HEP) have benefited from these advancements, transitioning many designs from fixed-function ASICs to more flexible FPGA-based platforms. Today’s FPGA devices provide a significantly higher amount of resources than those available during the initial Large Hadron Collider design phase. To take advantage of the capabilities of future FPGAs in the next generation of HEP experiments, designers must not only anticipate further improvements in FPGA hardware, but must also adopt design tools and methodologies that can scale along with that hardware. In this paper, we outline the major trends in FPGA hardware, describe the design challenges these trends will present to developers of HEP electronics, and discuss a range of techniques that can be adopted to overcome these challenges

    Software Defined Radio Architecture Contributions to Next Generation Space Communications

    Get PDF
    Space communications architecture concepts, comprising the elements of the system, the interactions among them, and the principles that govern their development, are essential factors in developing National Aeronautics and Space Administration (NASA) future exploration and science missions. Accordingly, vital architectural attributes encompass flexibility, the extensibility to insert future capabilities, and to enable evolution to provide interoperability with other current and future systems. Space communications architectures and technologies for this century must satisfy a growing set of requirements, including those for Earth sensing, collaborative observation missions, robotic scientific missions, human missions for exploration of the Moon and Mars where surface activities require supporting communications, and in-space observatories for observing the earth, as well as other star systems and the universe. An advanced, integrated, communications infrastructure will enable the reliable, multipoint, high-data-rate capabilities needed on demand to provide continuous, maximum coverage for areas of concentrated activity. Importantly, the cost/value proposition of the future architecture must be an integral part of its design; an affordable and sustainable architecture is indispensable within anticipated future budget environments. Effective architecture design informs decision makers with insight into the capabilities needed to efficiently satisfy the demanding space-communication requirements of future missions and formulate appropriate requirements. A driving requirement for the architecture is the extensibility to address new requirements and provide low-cost on-ramps for new capabilities insertion, ensuring graceful growth as new functionality and new technologies are infused into the network infrastructure. In addition to extensibility, another key architectural attribute of the space communication equipment's interoperability with other NASA communications systems, as well as those communications and navigation systems operated by international space agencies and civilian and government agencies. In this paper, we review the philosophies, technologies, architectural attributes, mission services, and communications capabilities that form the structure of candidate next-generation integrated communication architectures for space communications and navigation. A key area that this paper explores is from the development and operation of the software defined radio for the NASA Space Communications and Navigation (SCaN) Testbed currently on the International Space Station (ISS). Evaluating the lessons learned from development and operation feed back into the communications architecture. Leveraging the reconfigurability provides a change in the way that operations are done and must be considered. Quantifying the impact on the NASA Space Telecommunications Radio System (STRS) software defined radio architecture provides feedback to keep the standard useful and up to date. NASA is not the only customer of these radios. Software defined radios are developed for other applications, and taking advantage of these developments promotes an architecture that is cost effective and sustainable. Developments in the following areas such as an updated operating environment, higher data rates, networking and security can be leveraged. The ability to sustain an architecture that uses radios for multiple markets can lower costs and keep new technology infused

    VERILOG DESIGN AND FPGA PROTOTYPE OF A NANOCONTROLLER SYSTEM

    Get PDF
    Many new fabrication technologies, from nanotechnology and MEMS to printed organic semiconductors, center on constructing arrays of large numbers of sensors, actuators, or other devices on a single substrate. The utility of such an array could be greatly enhanced if each device could be managed by a programmable controller and all of these controllers could coordinate their actions as a massively-parallel computer. Kentucky Architecture nanocontroller array with very low per controller circuit complexity can provide efficient control of nanotechnology devices. This thesis provides a detailed description of the control hierarchy of a digital system needed to build nanocontrollers suitable for controlling millions of devices on a single chip. A Verilog design and FPGA prototype of a nanocontroller system is provided to meet the constraints associated with a massively-parallel programmable controller system

    Hardware-software codesign in a high-level synthesis environment

    Get PDF
    Interfacing hardware-oriented high-level synthesis to software development is a computationally hard problem for which no general solution exists. Under special conditions, the hardware-software codesign (system-level synthesis) problem may be analyzed with traditional tools and efficient heuristics. This dissertation introduces a new alternative to the currently used heuristic methods. The new approach combines the results of top-down hardware development with existing basic hardware units (bottom-up libraries) and compiler generation tools. The optimization goal is to maximize operating frequency or minimize cost with reasonable tradeoffs in other properties. The dissertation research provides a unified approach to hardware-software codesign. The improvements over previously existing design methodologies are presented in the frame-work of an academic CAD environment (PIPE). This CAD environment implements a sufficient subset of functions of commercial microelectronics CAD packages. The results may be generalized for other general-purpose algorithms or environments. Reference benchmarks are used to validate the new approach. Most of the well-known benchmarks are based on discrete-time numerical simulations, digital filtering applications, and cryptography (an emerging field in benchmarking). As there is a need for high-performance applications, an additional requirement for this dissertation is to investigate pipelined hardware-software systems\u27 performance and design methods. The results demonstrate that the quality of existing heuristics does not change in the enhanced, hardware-software environment
    corecore