147 research outputs found

    A Survey of Spiking Neural Network Accelerator on FPGA

    Full text link
    Due to the ability to implement customized topology, FPGA is increasingly used to deploy SNNs in both embedded and high-performance applications. In this paper, we survey state-of-the-art SNN implementations and their applications on FPGA. We collect the recent widely-used spiking neuron models, network structures, and signal encoding formats, followed by the enumeration of related hardware design schemes for FPGA-based SNN implementations. Compared with the previous surveys, this manuscript enumerates the application instances that applied the above-mentioned technical schemes in recent research. Based on that, we discuss the actual acceleration potential of implementing SNN on FPGA. According to our above discussion, the upcoming trends are discussed in this paper and give a guideline for further advancement in related subjects

    Algorithm and Hardware Co-design for Learning On-a-chip

    Get PDF
    abstract: Machine learning technology has made a lot of incredible achievements in recent years. It has rivalled or exceeded human performance in many intellectual tasks including image recognition, face detection and the Go game. Many machine learning algorithms require huge amount of computation such as in multiplication of large matrices. As silicon technology has scaled to sub-14nm regime, simply scaling down the device cannot provide enough speed-up any more. New device technologies and system architectures are needed to improve the computing capacity. Designing specific hardware for machine learning is highly in demand. Efforts need to be made on a joint design and optimization of both hardware and algorithm. For machine learning acceleration, traditional SRAM and DRAM based system suffer from low capacity, high latency, and high standby power. Instead, emerging memories, such as Phase Change Random Access Memory (PRAM), Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM), and Resistive Random Access Memory (RRAM), are promising candidates providing low standby power, high data density, fast access and excellent scalability. This dissertation proposes a hierarchical memory modeling framework and models PRAM and STT-MRAM in four different levels of abstraction. With the proposed models, various simulations are conducted to investigate the performance, optimization, variability, reliability, and scalability. Emerging memory devices such as RRAM can work as a 2-D crosspoint array to speed up the multiplication and accumulation in machine learning algorithms. This dissertation proposes a new parallel programming scheme to achieve in-memory learning with RRAM crosspoint array. The programming circuitry is designed and simulated in TSMC 65nm technology showing 900X speedup for the dictionary learning task compared to the CPU performance. From the algorithm perspective, inspired by the high accuracy and low power of the brain, this dissertation proposes a bio-plausible feedforward inhibition spiking neural network with Spike-Rate-Dependent-Plasticity (SRDP) learning rule. It achieves more than 95% accuracy on the MNIST dataset, which is comparable to the sparse coding algorithm, but requires far fewer number of computations. The role of inhibition in this network is systematically studied and shown to improve the hardware efficiency in learning.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Neuromorphic auditory computing: towards a digital, event-based implementation of the hearing sense for robotics

    Get PDF
    In this work, it is intended to advance on the development of the neuromorphic audio processing systems in robots through the implementation of an open-source neuromorphic cochlea, event-based models of primary auditory nuclei, and their potential use for real-time robotics applications. First, the main gaps when working with neuromorphic cochleae were identified. Among them, the accessibility and usability of such sensors can be considered as a critical aspect. Silicon cochleae could not be as flexible as desired for some applications. However, FPGA-based sensors can be considered as an alternative for fast prototyping and proof-of-concept applications. Therefore, a software tool was implemented for generating open-source, user-configurable Neuromorphic Auditory Sensor models that can be deployed in any FPGA, removing the aforementioned barriers for the neuromorphic research community. Next, the biological principles of the animals' auditory system were studied with the aim of continuing the development of the Neuromorphic Auditory Sensor. More specifically, the principles of binaural hearing were deeply studied for implementing event-based models to perform real-time sound source localization tasks. Two different approaches were followed to extract inter-aural time differences from event-based auditory signals. On the one hand, a digital, event-based design of the Jeffress model was implemented. On the other hand, a novel digital implementation of the Time Difference Encoder model was designed and implemented on FPGA. Finally, three different robotic platforms were used for evaluating the performance of the proposed real-time neuromorphic audio processing architectures. An audio-guided central pattern generator was used to control a hexapod robot in real-time using spiking neural networks on SpiNNaker. Then, a sensory integration application was implemented combining sound source localization and obstacle avoidance for autonomous robots navigation. Lastly, the Neuromorphic Auditory Sensor was integrated within the iCub robotic platform, being the first time that an event-based cochlea is used in a humanoid robot. Then, the conclusions obtained are presented and new features and improvements are proposed for future works.En este trabajo se pretende avanzar en el desarrollo de los sistemas de procesamiento de audio neuromórficos en robots a través de la implementación de una cóclea neuromórfica de código abierto, modelos basados en eventos de los núcleos auditivos primarios, y su potencial uso para aplicaciones de robótica en tiempo real. En primer lugar, se identificaron los principales problemas a la hora de trabajar con cócleas neuromórficas. Entre ellos, la accesibilidad y usabilidad de dichos sensores puede considerarse un aspecto crítico. Los circuitos integrados analógicos que implementan modelos cocleares pueden no pueden ser tan flexibles como se desea para algunas aplicaciones específicas. Sin embargo, los sensores basados en FPGA pueden considerarse una alternativa para el desarrollo rápido y flexible de prototipos y aplicaciones de prueba de concepto. Por lo tanto, en este trabajo se implementó una herramienta de software para generar modelos de sensores auditivos neuromórficos de código abierto y configurables por el usuario, que pueden desplegarse en cualquier FPGA, eliminando las barreras mencionadas para la comunidad de investigación neuromórfica. A continuación, se estudiaron los principios biológicos del sistema auditivo de los animales con el objetivo de continuar con el desarrollo del Sensor Auditivo Neuromórfico (NAS). Más concretamente, se estudiaron en profundidad los principios de la audición binaural con el fin de implementar modelos basados en eventos para realizar tareas de localización de fuentes sonoras en tiempo real. Se siguieron dos enfoques diferentes para extraer las diferencias temporales interaurales de las señales auditivas basadas en eventos. Por un lado, se implementó un diseño digital basado en eventos del modelo Jeffress. Por otro lado, se diseñó una novedosa implementación digital del modelo de codificador de diferencias temporales y se implementó en FPGA. Por último, se utilizaron tres plataformas robóticas diferentes para evaluar el rendimiento de las arquitecturas de procesamiento de audio neuromórfico en tiempo real propuestas. Se utilizó un generador central de patrones guiado por audio para controlar un robot hexápodo en tiempo real utilizando redes neuronales pulsantes en SpiNNaker. A continuación, se implementó una aplicación de integración sensorial que combina la localización de fuentes de sonido y la evitación de obstáculos para la navegación de robots autónomos. Por último, se integró el Sensor Auditivo Neuromórfico dentro de la plataforma robótica iCub, siendo la primera vez que se utiliza una cóclea basada en eventos en un robot humanoide. Por último, en este trabajo se presentan las conclusiones obtenidas y se proponen nuevas funcionalidades y mejoras para futuros trabajos

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    Spiking Neural Networks: Modification and Digital Implementation

    Get PDF
    Real-time large-scale simulation of biological systems is a challenging task due to nonlinear functions describing biochemical reactions in the cells. Being fast, cost and power efficient alongside of capability to work in parallel have made hardware an attractive choice for simulation platform. This thesis proposes a neuromorphic platform for online Spike Timing Dependant Plasticity (STDP) learning, based on the COordinate Rotation DIgital Computer (CORDIC) algorithms. The implemented platform comprises two main components. First, the Izhikevich neuron model is modified for implementation using the CORDIC algorithm and simulated to ensure the model accuracy. Afterwards, the model was described as hardware and implemented on Field Programmable Gate Array (FPGA). Second, the STDP learning algorithm is adapted and optimized using the CORDIC method, synthesized for hardware, and implemented to perform on-FPGA online learning on a network of CORDIC Izhikevich neurons to demonstrate competitive Hebbian learning. The implementation results are compared with the original model and state-of-the-art to verify accuracy, effectiveness, and higher speed of the system. These comparisons confirm that the proposed neuromorphic system offers better performance and higher accuracy while being straightforward to implement and suitable to scale. New findings show that astrocytes are important parts of the information processing in brain and believed to be responsible for some brain diseases such as Alzheimer and Epilepsy. Astrocytes generate Ca2+^{2+} waves and release neuro-transmitters over a large area. To study astrcoytes, one need to simulate large number of biologically realistic models of these cells alongside neuron models. Software simulation is flexible but slow. This thesis proposes a high-speed and low-cost digital hardware to replicate biological-plausible astrocyte and glutamate release mechanism. The nonlinear terms of these models were calculated using high-precision and cost-efficient algorithms. Subsequently, the modified models were simulated to study and validate their functions. Several hardware were developed by setting different constraints to investigate trade-offs and achieve best possible design. As proof of concept, the design was implemented on a FPGA device. Hardware implementation results confirmed the ability of the design to replicate biological cells in detail with high accuracy. As for performance, the proposed design turned out to be far more faster and area efficient than previously published works that targeted digital hardware for biological-plausible astrocytes. Spiking neurons, the models that mimic the biological cells in the brain, are described using ordinary differential equations. A common method to numerically solve these equations is Euler\u27s method. An important factor that has a significant impact on the performance and cost of the hardware implementation or software simulation of spiking neural networks and yet its importance has been neglected in the published literature, is the time step in Euler\u27s method. In this thesis, first the Izhikevich neuron\u27s accuracy as a function of the time step was measured. It was uncovered that the threshold time step that Izhikevich neuron becomes unstable is an exponential function of the input current. Software simulation performance, including total computational time and memory usage were compared for different time steps. Afterwards, the model was synthesized and implemented on the FPGA. Hardware performance metrics such as speed, area and power consumption were measured for each time step. Results indicated that time step has a negative linear effect on the performance. It was concluded that by determining maximum input current to the neuron, larger time steps comparable to those used in the previous works could be employed

    Scalable Digital Architecture of a Liquid State Machine

    Get PDF
    Liquid State Machine (LSM) is an adaptive neural computational model with rich dynamics to process spatio-temporal inputs. These machines are extremely fast in learning because the goal-oriented training is moved to the output layer, unlike conventional recurrent neural networks. The capability to multiplex at the output layer for multiple tasks makes LSM a powerful intelligent engine. These properties are desirable in several machine learning applications such as speech recognition, anomaly detection, user identification etc. Scalable hardware architectures for spatio-temporal signal processing algorithms like LSMs are energy efficient compared to the software implementations. These designs can also naturally adapt to dierent temporal streams of inputs. Early literature shows few behavioral models of LSM. However, they cannot process real time data either due to their hardware complexity or xed design approach. In this thesis, a scalable digital architecture of an LSM is proposed. A key feature of the architecture is a digital liquid that exploits spatial locality and is capable of processing real time data. The quality of the proposed LSM is analyzed using kernel quality, separation property of the liquid and Lyapunov exponent. When realized using TSMC 65nm technology node, the total power dissipation of the liquid layer, with 60 neurons, is 55.7 mW with an area requirement of 2 mm^2. The proposed model is validated for two benchmark. In the case of an epileptic seizure detection an average accuracy of 84% is observed. For user identification/authentication using gait an average accuracy of 98.65% is achieved

    Enabling rapid iterative model design within the laboratory environment

    Get PDF
    This thesis presents a proof of concept study for the better integration of the electrophysiological and modelling aspects of neuroscience. Members of these two sub-disciplines collaborate regularly, but due to differing resource requirements, and largely incompatible spheres of knowledge, cooperation is often impeded by miscommunication and delays. To reduce the model design time, and provide a platform for more efficient experimental analysis, a rapid iterative model design method is proposed. The main achievement of this work is the development of a rapid model evaluation method based on parameter estimation, utilising a combination of evolutionary algorithms (EAs) and graphics processing unit (GPU) hardware acceleration. This method is the primary force behind the better integration of modelling and laboratorybased electrophysiology, as it provides a generic model evaluation method that does not require prior knowledge of model structure, or expertise in modelling, mathematics, or computer science. If combined with a suitable intuitive and user targeted graphical user interface, the ideas presented in this thesis could be developed into a suite of tools that would enable new forms of experimentation to be performed. The latter part of this thesis investigates the use of excitability-based models as the basis of an iterative design method. They were found to be computationally and structurally simple, easily extensible, and able to reproduce a wide range of neural behaviours whilst still faithfully representing underlying cellular mechanisms. A case study was performed to assess the iterative design process, through the implementation of an excitability-based model. The model was extended iteratively, using the rapid model evaluation method, to represent a vasopressin releasing neuron. Not only was the model implemented successfully, but it was able to suggest the existence of other more subtle cell mechanisms, in addition to highlighting potential failings in previous implementations of the class of neuron
    corecore