3 research outputs found

    Efficient Hardware Implementation of Probabilistic Gradient Descent Bit Flipping

    Get PDF
    This paper presents a new Bit Flipping (BF) decoder, called Probabilistic Parallel Bit Flipping (PPBF) for Low-Density Parity-Check (LDPC) codes on the Binary Symmetric Channel. In PPBF, the flipping operation is preceded with a probabilistic behavior which is shown to improve significantly the error correction performance. The advantage of PPBF comes from the fact that, no global computation is required during the decoding process and from that, all the computations can be executed in the local computing units and in-parallel. PPBF provides a considerable improvement of the decoding frequency and complexity, compared to other known BF decoders, while obtaining a significant gain in error correction. One improved version of PPBF, called non-syndrome PPBF (NS-PPBF) is also introduced, in which the global syndrome check is moved out of the critical path and a new terminating mechanism is proposed. In order to show the superiority of the new decoders in terms of hardware efficiency and decoding throughput, the corresponding hardware architectures are presented in the second part of the paper. The ASIC synthesis results confirm that, the decoding frequency of the proposed decoders is significantly improved, much higher than the BF decoders of literature while requiring lower complexity to be efficiently implemented

    Low-Power 400-Gbps Soft-Decision LDPC FEC for Optical Transport Networks

    Get PDF
    We present forward error correction systems based on soft-decision low-density parity check (LDPC) codes for applications in 100–400-Gbps optical transport networks. These systems are based on the low-complexity β€œadaptive degeneration” decoding algorithm, which we introduce in this paper, along with randomly-structured LDPC codes with block lengths from 30 000 to 60 000 bits and overhead (OH) from 6.7% to 33%. We also construct a 3600-bit prototype LDPC code with 20% overhead, and experimentally show that it has no error floor above a bit error rate (BER) of 10βˆ’15 using a field-programmable gate array (FPGA)-based hardware emulator. The projected net coding gain at a BER of 10βˆ’15 ranges from 9.6 dB at 6.7% OH to 11.2 dB at 33% OH. We also present application-specific integrated circuit synthesis results for these decoders in 28 nm fully depleted silicon on insulator technology, which show that they are capable of 400-Gbps operation with energy consumption of under 3 pJ per information bit

    Flexible encoder and decoder of low density parity check codes

    Get PDF
    Π£ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ су ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π±Ρ€Π·Π°, флСксибилна ΠΈ хардвСрски Сфикасна Ρ€Π΅ΡˆΠ΅ΡšΠ° Π·Π° кодовањС ΠΈ дСкодовањС ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎ Π½Π΅Ρ€Π΅Π³ΡƒΠ»Π°Ρ€Π½ΠΈΡ… ΠΊΠΎΠ΄ΠΎΠ²Π° са ΠΏΡ€ΠΎΠ²Π΅Ρ€Π°ΠΌΠ° парности ΠΌΠ°Π»Π΅ густинС (Π΅Π½Π³Π». low-density parity-check, LDPC, codes) Π·Π°Ρ…Ρ‚Π΅Π²Π°Π½Π° Ρƒ саврСмСним ΠΊΠΎΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½ΠΈΠΌ стандардима. ЈСдан Π΄Π΅ΠΎ доприноса Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ јС Ρƒ новој Π΄Π΅Π»ΠΈΠΌΠΈΡ‡Π½ΠΎ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½ΠΎΡ˜ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€ΠΈ LDPC ΠΊΠΎΠ΄Π΅Ρ€Π° Π·Π° ΠΏΠ΅Ρ‚Ρƒ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡ˜Ρƒ ΠΌΠΎΠ±ΠΈΠ»Π½ΠΈΡ… ΠΊΠΎΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°. АрхитСктура јС заснована Π½Π° Ρ„Π»Π΅ΠΊΡΠΈΠ±ΠΈΠ»Π½ΠΎΡ˜ ΠΌΡ€Π΅ΠΆΠΈ Π·Π° ΠΊΡ€ΡƒΠΆΠ½ΠΈ ΠΏΠΎΠΌΠ΅Ρ€Π°Ρ˜ која ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½ΠΎ ΠΏΡ€ΠΎΡ†Π΅ΡΠΈΡ€Π°ΡšΠ΅ вишС Π΄Π΅Π»ΠΎΠ²Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π½Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ ΠΊΡ€Π°Ρ‚ΠΊΠΈΡ… ΠΊΠΎΠ΄ΠΎΠ²Π° Ρ‡ΠΈΠΌΠ΅ сС ΠΎΡΡ‚Π²Π°Ρ€ΡƒΡ˜Π΅ сличан Π½ΠΈΠ²ΠΎ ΠΏΠ°Ρ€Π°Π»Π΅Π»ΠΈΠ·ΠΌΠ° ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΊΠΎΠ΄ΠΎΠ²Π°ΡšΡƒ Π΄ΡƒΠ³Π°Ρ‡ΠΊΠΈΡ… ΠΊΠΎΠ΄ΠΎΠ²Π°. ΠŸΠΎΡ€Π΅Π΄ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π°Π»Π½ΠΎΠ³ Ρ€Π΅ΡˆΠ΅ΡšΠ°, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° јС ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° рСдослСда ΠΏΡ€ΠΎΡ†Π΅ΡΠΈΡ€Π°ΡšΠ° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π½Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ заснована Π½Π° Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡ΠΊΠΎΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ, која ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° ΠΏΠΎΡΡ‚ΠΈΠ·Π°ΡšΠ΅ Π²Π΅Π»ΠΈΠΊΠΈΡ… ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠ°, ΠΌΠ°Π»ΠΎΠ³ кашњСња ΠΈ Ρ‚Ρ€Π΅Π½ΡƒΡ‚Π½ΠΎ Π½Π°Ρ˜Π±ΠΎΡ™Π΅ Сфикасности ΠΈΡΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° хардвСрских рСсурса. Π£ Π΄Ρ€ΡƒΠ³ΠΎΠΌ Π΄Π΅Π»Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ јС Π½ΠΎΠ²ΠΎ алгоритамско ΠΈ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π°Π»Π½ΠΎ Ρ€Π΅ΡˆΠ΅ΡšΠ΅ Π·Π° дСкодовањС структурираних LDPC ΠΊΠΎΠ΄ΠΎΠ²Π°. ЧСсто ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΈ приступ Ρƒ LDPC Π΄Π΅ΠΊΠΎΠ΄Π΅Ρ€ΠΈΠΌΠ° јС ΡΠ»ΠΎΡ˜Π΅Π²ΠΈΡ‚ΠΎ дСкодовањС, ΠΊΠΎΠ΄ ΠΊΠΎΠ³Π° сС услСд ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Π΅ ΠΎΠ±Ρ€Π°Π΄Π΅ Ρ˜Π°Π²Ρ™Π°Ρ˜Ρƒ Ρ…Π°Π·Π°Ρ€Π΄ΠΈ ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° који ΡΠΌΠ°ΡšΡƒΡ˜Ρƒ ΠΏΡ€ΠΎΡ‚ΠΎΠΊ. Π”Π΅ΠΊΠΎΠ΄Π΅Ρ€ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ Ρƒ ΠΊΠΎΠ½Ρ„Π»ΠΈΠΊΡ‚Π½ΠΈΠΌ ΡΠΈΡ‚ΡƒΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° Π½Π° ΠΏΠΎΠ³ΠΎΠ΄Π°Π½ Π½Π°Ρ‡ΠΈΠ½ ΠΊΠΎΠΌΠ±ΠΈΠ½ΡƒΡ˜Π΅ ΡΠ»ΠΎΡ˜Π΅Π²ΠΈΡ‚ΠΎ ΠΈ симултано дСкодовањС Ρ‡ΠΈΠΌΠ΅ сС ΠΈΠ·Π±Π΅Π³Π°Π²Π°Ρ˜Ρƒ циклуси ΠΏΠ°ΡƒΠ·Π΅ ΠΈΠ·Π°Π·Π²Π°Π½ΠΈ Ρ…Π°Π·Π°Ρ€Π΄ΠΈΠΌΠ° ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ°. Овај приступ дајС могућност Π·Π° ΡƒΠ²ΠΎΡ’Π΅ΡšΠ΅ Π²Π΅Π»ΠΈΠΊΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° стСпСни ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Π΅ ΠΎΠ±Ρ€Π°Π΄Π΅ Ρ‡ΠΈΠΌΠ΅ сС постиТС висока учСстаност сигнала Ρ‚Π°ΠΊΡ‚Π°. Π”ΠΎΠ΄Π°Ρ‚Π½ΠΎ, рСдослСд ΠΏΡ€ΠΎΡ†Π΅ΡΠΈΡ€Π°ΡšΠ° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π½Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ јС ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΎΠ²Π°Π½ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡ΠΊΠΎΠ³ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π·Π° ΠΏΠΎΠ±ΠΎΡ™ΡˆΠ°Π½Π΅ пСрформансС ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ Π³Ρ€Π΅ΡˆΠ°ΠΊΠ°. ΠžΡΡ‚Π²Π°Ρ€Π΅Π½ΠΈ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ Π΄Π°, Ρƒ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ са Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈΠΌ Ρ€Π΅ΡˆΠ΅ΡšΠΈΠΌΠ°, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈ Π΄Π΅ΠΊΠΎΠ΄Π΅Ρ€ ΠΎΡΡ‚Π²Π°Ρ€ΡƒΡ˜Π΅ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π° ΠΏΠΎΠ±ΠΎΡ™ΡˆΠ°ΡšΠ° Ρƒ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΡƒ ΠΈ Π½Π°Ρ˜Π±ΠΎΡ™Ρƒ Сфикасност Π·Π° истС пСрформансС ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ Π³Ρ€Π΅ΡˆΠ°ΠΊΠ°.The dissertation proposes high speed, flexible and hardware efficient solutions for coding and decoding of highly irregular low-density parity-check (LDPC) codes, required by many modern communication standards. The first part of the dissertation’s contributions is in the novel partially parallel LDPC encoder architecture for 5G. The architecture was built around the flexible shifting network that enables parallel processing of multiple parity check matrix elements for short to medium code lengths, thus providing almost the same level of parallelism as for long code encoding. In addition, the processing schedule was optimized for minimal encoding time using the genetic algorithm. The optimization procedure contributes to achieving high throughputs, low latency, and up to date the best hardware usage efficiency (HUE). The second part proposes a new algorithmic and architectural solution for structured LDPC code decoding. A widely used approach in LDPC decoders is a layered decoding schedule, which frequently suffers from pipeline data hazards that reduce the throughput. The decoder proposed in the dissertation conveniently incorporates both the layered and the flooding schedules in cases when hazards occur and thus facilitates LDPC decoding without stall cycles caused by pipeline hazards. Therefore, the proposed architecture enables insertion of many pipeline stages, which consequently provides a high operating clock frequency. Additionally, the decoding schedule was optimized for better signal-to-noise ratio (SNR) performance using genetic algorithm. The obtained results show that the proposed decoder achieves great throughput increase and the best HUE when compared with the state of the art for the same SNR performance
    corecore