121 research outputs found

    Art Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

    Full text link
    A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results are obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A prototype remote sensing example introduces each aspect of data processing and fuzzy ARTMAP classification. The example shows how the network automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction and assigns confidence estimates by training the system several times on different orderings of an input set.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-l-0409, N00014-95-0657

    A Neural Network Method for Mixture Estimation for Vegetation Mapping

    Full text link
    While most forest maps identify only the dominant vegetation class in delineated stands, individual stands are often better characterized by a mix of vegetation types. Many land management applications, including wildlife habitat studies, can benefit from knowledge of mixes. This paper examines various algorithms that use data from the Landsat Thematic Mapper (TM) satellite to estimate mixtures of vegetation types within forest stands. Included in the study are maximum likelihood classification and linear mixture models as well as a new methodology based on the ARTMAP neural network. Two paradigms are considered: classification methods, which describe stand-level vegetation mixtures as mosaics of pixels, each identified with its primary vegetation class; and mixture methods, which treat samples as blends of vegetation, even at the pixel level. Comparative analysis of these mixture estimation methods, tested on data from the Plumas National Forest, yields the following conclusions: (1) accurate estimates of proportions of hardwood and conifer cover within stands can be obtained, particularly when brush is not present in the understory; (2) ARTMAP outperforms statistical methods and linear mixture models in both the classification and the mixture paradigms; (3) topographic correction fails to improve mapping accuracy; and (4) the new ARTMAP mixture system produces the most accurate overall results. The Plumas data set has been made available to other researchers for further development of new mapping methods and comparison with the quantitative studies presented here, which establish initial benchmark standards.National Science Foundation (IRI 94-0165, SBR 95-13889); Office of Naval Research (N00014-95-1-0409, N00014-95-0657); Region 5 Remote Sensing Laboratory of the U.S. Forest Servic

    ARTMAP-FTR: A Neural Network For Fusion Target Recognition, With Application To Sonar Classification

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include automatic mapping from satellite remote sensing data, machine tool monitoring, medical prediction, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, Gaussian ARTMAP, and distributed ARTMAP. A new ARTMAP variant, called ARTMAP-FTR (fusion target recognition), has been developed for the problem of multi-ping sonar target classification. The development data set, which lists sonar returns from underwater objects, was provided by the Naval Surface Warfare Center (NSWC) Coastal Systems Station (CSS), Dahlgren Division. The ARTMAP-FTR network has proven to be an effective tool for classifying objects from sonar returns. The system also provides a procedure for solving more general sensor fusion problems.Office of Naval Research (N00014-95-I-0409, N00014-95-I-0657

    Spectral Pattern Recognition and Fuzzy Artmap Classification: Design Features, System Dynamics and Real World Simulation

    Get PDF
    Classification of terrain cover from satellite radar imagery represents an area of considerable current interest and research. Most satellite sensors used for land applications are of the imaging type. They record data in a variety of spectral channels and at a variety of ground resolutions. Spectral pattern recognition refers to classification procedures utilizing pixel-by-pixel spectral information as the basis for automated land cover classification. A number of methods have been developed in the past to classify pixels [resolution cells] from multispectral imagery to a priori given land cover categories. Their ability to provide land cover information with high classification accuracies is significant for work where accurate and reliable thematic information is needed. The current trend towards the use of more spectral bands on satellite instruments, such as visible and infrared imaging spectrometers, and finer pixel and grey level resolutions will offer more precise possibilities for accurate identification. But as the complexity of the data grows, so too does the need for more powerful tools to analyse them. It is the major objective of this study to analyse the capabilities and applicability of the neural pattern recognition system, called fuzzy ARTMAP, to generate high quality classifications of urban land cover using remotely sensed images. Fuzzy ARTMAP synthesizes fuzzy logic and Adaptive Resonance Theory (ART) by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of category choice, search and learning. The paper describes design features, system dynamics and simulation algorithms of this learning system, which is trained and tested for classification (8 a priori given classes) of a multispectral image of a Landsat-5 Thematic Mapper scene (270 x 360 pixels) from the City of Vienna on a pixel-by-pixel basis. Fuzzy ARTMAP performance is compared with that of an error-based learning system based upon the multi-layer perceptron, and the Gaussian maximum likelihood classifier as conventional statistical benchmark on the same database. Both neural classifiers outperform the conventional classifier in terms of classification accuracy. Fuzzy ARTMAP leads to out-of-sample classification accuracies, very close to maximum performance, while the multi-layer perceptron--like the conventional classifier--shows difficulties to distinguish between some land use categories

    ART Neural Networks for Remote Sensing Image Analysis

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems, including automatic mapping from remote sensing satellite measurements, parts design retrieval at the Boeing Company, medical database prediction, and robot vision. This paper features a self-contained introduction to ART and ARTMAP dynamics. An application of these networks to image processing is illustrated by means of a remote sensing example. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, which allows the network to encode important rare cases but which may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. Recently developed ART models (dART and dARTMAP) retain stable coding, recognition, and prediction, but allow arbitrarily distributed category representation during learning as well as performance

    ARTMAP-FTR: A Neural Network for Object Recognition Through Sonar on a Mobile Robot

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include automatic mapping from satellite remote sensing data, machine tool monitoring, medical prediction, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, Gaussian ARTMAP, and distributed ARTMAP. A new ARTMAP variant, called ARTMAP-FTR (fusion target recognition), has been developed for the problem of multi-ping sonar target classification. The development data set, which lists sonar returns from underwater objects, was provided by the Naval Surface Warfare Center (NSWC) Coastal Systems Station (CSS), Dahlgren Division. The ARTMAP-FTR network has proven to be an effective tool for classifying objects from sonar returns. The system also provides a procedure for solving more general sensor fusion problems.Office of Naval Research (N00014-95-I-0409, N00014-95-I-0657

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    A Neural Network Method for Efficient Vegetation Mapping

    Full text link
    This paper describes the application of a neural network method designed to improve the efficiency of map production from remote sensing data. Specifically, the ARTMAP neural network produces vegetation maps of the Sierra National Forest, in Northern California, using Landsat Thematic Mapper (TM) data. In addition to spectral values, the data set includes terrain and location information for each pixel. The maps produced by ARTMAP are of comparable accuracy to maps produced by a currently used method, which requires expert knowledge of the area as well as extensive manual editing. In fact, once field observations of vegetation classes had been collected for selected sites, ARTMAP took only a few hours to accomplish a mapping task that had previously taken many months. The ARTMAP network features fast on-line learning, so the system can be updated incrementally when new field observations arrive, without the need for retraining on the entire data set. In addition to maps that identify lifeform and Calveg species, ARTMAP produces confidence maps, which indicate where errors are most likely to occur and which can, therefore, be used to guide map editing

    Adaptive Resonance: An Emerging Neural Theory of Cognition

    Full text link
    Adaptive resonance is a theory of cognitive information processing which has been realized as a family of neural network models. In recent years, these models have evolved to incorporate new capabilities in the cognitive, neural, computational, and technological domains. Minimal models provide a conceptual framework, for formulating questions about the nature of cognition; an architectural framework, for mapping cognitive functions to cortical regions; a semantic framework, for precisely defining terms; and a computational framework, for testing hypotheses. These systems are here exemplified by the distributed ART (dART) model, which generalizes localist ART systems to allow arbitrarily distributed code representations, while retaining basic capabilities such as stable fast learning and scalability. Since each component is placed in the context of a unified real-time system, analysis can move from the level of neural processes, including learning laws and rules of synaptic transmission, to cognitive processes, including attention and consciousness. Local design is driven by global functional constraints, with each network synthesizing a dynamic balance of opposing tendencies. The self-contained working ART and dART models can also be transferred to technology, in areas that include remote sensing, sensor fusion, and content-addressable information retrieval from large databases.Office of Naval Research and the defense Advanced Research Projects Agency (N00014-95-1-0409, N00014-1-95-0657); National Institutes of Health (20-316-4304-5
    • …
    corecore