435 research outputs found

    An Investigation of How Wavelet Transform can Affect the Correlation Performance of Biomedical Signals : The Correlation of EEG and HRV Frequency Bands in the frontal lobe of the brain

    Get PDF
    © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedRecently, the correlation between biomedical signals, such as electroencephalograms (EEG) and electrocardiograms (ECG) time series signals, has been analysed using the Pearson Correlation method. Although Wavelet Transformations (WT) have been performed on time series data including EEG and ECG signals, so far the correlation between WT signals has not been analysed. This research shows the correlation between the EEG and HRV, with and without WT signals. Our results suggest electrical activity in the frontal lobe of the brain is best correlated with the HRV.We assume this is because the frontal lobe is related to higher mental functions of the cerebral cortex and responsible for muscle movements of the body. Our results indicate a positive correlation between Delta, Alpha and Beta frequencies of EEG at both low frequency (LF) and high frequency (HF) of HRV. This finding is independent of both participants and brain hemisphere.Final Published versio

    Visual Saliency Detection in Advanced Driver Assistance Systems

    Full text link
    Visual Saliency refers to the innate human mechanism of focusing on and extracting important features from the observed environment. Recently, there has been a notable surge of interest in the field of automotive research regarding the estimation of visual saliency. While operating a vehicle, drivers naturally direct their attention towards specific objects, employing brain-driven saliency mechanisms that prioritize certain elements over others. In this investigation, we present an intelligent system that combines a drowsiness detection system for drivers with a scene comprehension pipeline based on saliency. To achieve this, we have implemented a specialized 3D deep network for semantic segmentation, which has been pretrained and tailored for processing the frames captured by an automotive-grade external camera. The proposed pipeline was hosted on an embedded platform utilizing the STA1295 core, featuring ARM A7 dual-cores, and embeds an hardware accelerator. Additionally, we employ an innovative biosensor embedded on the car steering wheel to monitor the driver drowsiness, gathering the PhotoPlethysmoGraphy (PPG) signal of the driver. A dedicated 1D temporal deep convolutional network has been devised to classify the collected PPG time-series, enabling us to assess the driver level of attentiveness. Ultimately, we compare the determined attention level of the driver with the corresponding saliency-based scene classification to evaluate the overall safety level. The efficacy of the proposed pipeline has been validated through extensive experimental results

    An intelligent multimodal biometric authentication model for personalised healthcare services

    Get PDF
    With the advent of modern technologies, the healthcare industry is moving towards a more personalised smart care model. The enablers of such care models are the Internet of Things (IoT) and Artificial Intelligence (AI). These technologies collect and analyse data from persons in care to alert relevant parties if any anomaly is detected in a patient’s regular pattern. However, such reliance on IoT devices to capture continuous data extends the attack surfaces and demands high-security measures. Both patients and devices need to be authenticated to mitigate a large number of attack vectors. The biometric authentication method has been seen as a promising technique in these scenarios. To this end, this paper proposes an AI-based multimodal biometric authentication model for single and group-based users’ device-level authentication that increases protection against the traditional single modal approach. To test the efficacy of the proposed model, a series of AI models are trained and tested using physiological biometric features such as ECG (Electrocardiogram) and PPG (Photoplethysmography) signals from five public datasets available in Physionet and Mendeley data repositories. The multimodal fusion authentication model shows promising results with 99.8% accuracy and an Equal Error Rate (EER) of 0.16
    • …
    corecore