7 research outputs found

    An investigation into weighted data fusion for content-based multimedia information retrieval

    Get PDF
    Content Based Multimedia Information Retrieval (CBMIR) is characterised by the combination of noisy sources of information which, in unison, are able to achieve strong performance. In this thesis we focus on the combination of ranked results from the independent retrieval experts which comprise a CBMIR system through linearly weighted data fusion. The independent retrieval experts are low-level multimedia features, each of which contains an indexing function and ranking algorithm. This thesis is comprised of two halves. In the first half, we perform a rigorous empirical investigation into the factors which impact upon performance in linearly weighted data fusion. In the second half, we leverage these finding to create a new class of weight generation algorithms for data fusion which are capable of determining weights at query-time, such that the weights are topic dependent

    A generic framework for context-dependent fusion with application to landmine detection.

    Get PDF
    For complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be a viable alternative to using a single classifier. Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. Most of these were global as they assign a degree of worthiness to each classifier, that is averaged over the entire training data. This may not be the optimal way to combine the different experts since the behavior of each one may not be uniform over the different regions of the feature space. To overcome this issue, few local methods have been proposed in the last few years. Local fusion methods aim to adapt the classifiers\u27 worthiness to different regions of the feature space. First, they partition the input samples. Then, they identify the best classifier for each partition and designate it as the expert for that partition. Unfortunately, current local methods are either computationally expensive and/or perform these two tasks independently of each other. However, feature space partition and algorithm selection are not independent and their optimization should be simultaneous. In this dissertation, we introduce a new local fusion approach, called Context Extraction for Local Fusion (CELF). CELF was designed to adapt the fusion to different regions of the feature space. It takes advantage of the strength of the different experts and overcome their limitations. First, we describe the baseline CELF algorithm. We formulate a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. The context identification component thrives to partition the input feature space into different clusters (called contexts), while the fusion component thrives to learn the optimal fusion parameters within each cluster. Second, we propose several variations of CELF to deal with different applications scenario. In particular, we propose an extension that includes a feature discrimination component (CELF-FD). This version is advantageous when dealing with high dimensional feature spaces and/or when the number of features extracted by the individual algorithms varies significantly. CELF-CA is another extension of CELF that adds a regularization term to the objective function to introduce competition among the clusters and to find the optimal number of clusters in an unsupervised way. CELF-CA starts by partitioning the data into a large number of small clusters. As the algorithm progresses, adjacent clusters compete for data points, and clusters that lose the competition gradually become depleted and vanish. Third, we propose CELF-M that generalizes CELF to support multiple classes data sets. The baseline CELF and its extensions were formulated to use linear aggregation to combine the output of the different algorithms within each context. For some applications, this can be too restrictive and non-linear fusion may be needed. To address this potential drawback, we propose two other variations of CELF that use non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desirable property of assigning weights to subsets of classifiers to take into account the interaction between them. To test a new signature using CELF (or its variants), each algorithm would extract its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the fusion parameters of this context are used to fuse the individual confidence values. For each variation of CELF, we formulate an objective function, derive the necessary conditions to optimize it, and construct an iterative algorithm. Then we use examples to illustrate the behavior of the algorithm, compare it to global fusion, and highlight its advantages. We apply our proposed fusion methods to the problem of landmine detection. We use data collected using Ground Penetration Radar (GPR) and Wideband Electro -Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can identify meaningful and coherent contexts (e.g. mines of same type, mines buried at the same site, etc.) and that different expert algorithms can be identified for the different contexts. In addition to the land mine detection application, we apply our approaches to semantic video indexing, image database categorization, and phoneme recognition. In all applications, we compare the performance of CELF with standard fusion methods, and show that our approach outperforms all these methods

    An in-depth evaluation of multimodal video genre categorization

    Get PDF
    International audienceIn this paper we propose an in-depth evaluation of the performance of video descriptors to multimodal video genre categorization. We discuss the perspective of designing appropriate late fusion techniques that would enable to attain very high categorization accuracy, close to the one achieved with user-based text information. Evaluation is carried out in the context of the 2012 Video Genre Tagging Task of the MediaEval Benchmarking Initiative for Multimedia Evaluation, using a data set of up to 15.000 videos (3,200 hours of footage) and 26 video genre categories specific to web media. Results show that the proposed approach significantly improves genre categorization performance, outperforming other existing approaches. The main contribution of this paper is in the experimental part, several valuable interesting findings are reported that motivate further research on video genre classification

    Bridging semantic gap: learning and integrating semantics for content-based retrieval

    Full text link
    Digital cameras have entered ordinary homes and produced^incredibly large number of photos. As a typical example of broad image domain, unconstrained consumer photos vary significantly. Unlike professional or domain-specific images, the objects in the photos are ill-posed, occluded, and cluttered with poor lighting, focus, and exposure. Content-based image retrieval research has yet to bridge the semantic gap between computable low-level information and high-level user interpretation. In this thesis, we address the issue of semantic gap with a structured learning framework to allow modular extraction of visual semantics. Semantic image regions (e.g. face, building, sky etc) are learned statistically, detected directly from image without segmentation, reconciled across multiple scales, and aggregated spatially to form compact semantic index. To circumvent the ambiguity and subjectivity in a query, a new query method that allows spatial arrangement of visual semantics is proposed. A query is represented as a disjunctive normal form of visual query terms and processed using fuzzy set operators. A drawback of supervised learning is the manual labeling of regions as training samples. In this thesis, a new learning framework to discover local semantic patterns and to generate their samples for training with minimal human intervention has been developed. The discovered patterns can be visualized and used in semantic indexing. In addition, three new class-based indexing schemes are explored. The winnertake- all scheme supports class-based image retrieval. The class relative scheme and the local classification scheme compute inter-class memberships and local class patterns as indexes for similarity matching respectively. A Bayesian formulation is proposed to unify local and global indexes in image comparison and ranking that resulted in superior image retrieval performance over those of single indexes. Query-by-example experiments on 2400 consumer photos with 16 semantic queries show that the proposed approaches have significantly better (18% to 55%) average precisions than a high-dimension feature fusion approach. The thesis has paved two promising research directions, namely the semantics design approach and the semantics discovery approach. They form elegant dual frameworks that exploits pattern classifiers in learning and integrating local and global image semantics

    Cloud-Based Benchmarking of Medical Image Analysis

    Get PDF
    Medical imagin
    corecore