1,648 research outputs found

    Towards Adaptable and Adaptive Policy-Free Middleware

    Get PDF
    We believe that to fully support adaptive distributed applications, middleware must itself be adaptable, adaptive and policy-free. In this paper we present a new language-independent adaptable and adaptive policy framework suitable for integration in a wide variety of middleware systems. This framework facilitates the construction of adaptive distributed applications. The framework addresses adaptability through its ability to represent a wide range of specific middleware policies. Adaptiveness is supported by a rich contextual model, through which an application programmer may control precisely how policies should be selected for any particular interaction with the middleware. A contextual pattern mechanism facilitates the succinct expression of both coarse- and fine-grain policy contexts. Policies may be specified and altered dynamically, and may themselves take account of dynamic conditions. The framework contains no hard-wired policies; instead, all policies can be configured.Comment: Submitted to Dependable and Adaptive Distributed Systems Track, ACM SAC 200

    Adaptive multiagent system for seismic emergency management

    Get PDF
    Presently, most multiagent frameworks are typically programmed in Java. Since the JADE platform has been recently ported to .NET, we used it to create an adaptive multiagent system where the knowledge base of the agents is managed using the CLIPS language, also called from .NET. The multiagent system is applied to create seismic risk scenarios, simulations of emergency situations, in which different parties, modeled as adaptive agents, interact and cooperate.adaptive systems, risk management, seisms.

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    A consistency framework for dynamic reconfiguration in AO-middleware architectures

    No full text
    Aspect-oriented (AO) middleware is a promising technology for the realisation of dynamic reconfiguration in distributed systems. Similar to other dynamic reconfiguration approaches, AO-middleware based reconfiguration requires that the consistency of the system is maintained across reconfigurations. AO middleware based reconfiguration is an ongoing research topic and several consistency approaches have been proposed. However, most of these approaches tend to be targeted at specific narrow contexts, whereas for heterogeneous distributed systems it is crucial to cover a wide range of operating conditions. In this paper we address this problem by exploring a flexible, framework-based consistency management approach that cover a wide range of operating conditions ensuring distributed dynamic reconfiguration in a consistent manner for AO-middleware architectures

    RAFDA: A Policy-Aware Middleware Supporting the Flexible Separation of Application Logic from Distribution

    Get PDF
    Middleware technologies often limit the way in which object classes may be used in distributed applications due to the fixed distribution policies that they impose. These policies permeate applications developed using existing middleware systems and force an unnatural encoding of application level semantics. For example, the application programmer has no direct control over inter-address-space parameter passing semantics. Semantics are fixed by the distribution topology of the application, which is dictated early in the design cycle. This creates applications that are brittle with respect to changes in distribution. This paper explores technology that provides control over the extent to which inter-address-space communication is exposed to programmers, in order to aid the creation, maintenance and evolution of distributed applications. The described system permits arbitrary objects in an application to be dynamically exposed for remote access, allowing applications to be written without concern for distribution. Programmers can conceal or expose the distributed nature of applications as required, permitting object placement and distribution boundaries to be decided late in the design cycle and even dynamically. Inter-address-space parameter passing semantics may also be decided independently of object implementation and at varying times in the design cycle, again possibly as late as run-time. Furthermore, transmission policy may be defined on a per-class, per-method or per-parameter basis, maximizing plasticity. This flexibility is of utility in the development of new distributed applications, and the creation of management and monitoring infrastructures for existing applications.Comment: Submitted to EuroSys 200

    Tiresias: Online Anomaly Detection for Hierarchical Operational Network Data

    Full text link
    Operational network data, management data such as customer care call logs and equipment system logs, is a very important source of information for network operators to detect problems in their networks. Unfortunately, there is lack of efficient tools to automatically track and detect anomalous events on operational data, causing ISP operators to rely on manual inspection of this data. While anomaly detection has been widely studied in the context of network data, operational data presents several new challenges, including the volatility and sparseness of data, and the need to perform fast detection (complicating application of schemes that require offline processing or large/stable data sets to converge). To address these challenges, we propose Tiresias, an automated approach to locating anomalous events on hierarchical operational data. Tiresias leverages the hierarchical structure of operational data to identify high-impact aggregates (e.g., locations in the network, failure modes) likely to be associated with anomalous events. To accommodate different kinds of operational network data, Tiresias consists of an online detection algorithm with low time and space complexity, while preserving high detection accuracy. We present results from two case studies using operational data collected at a large commercial IP network operated by a Tier-1 ISP: customer care call logs and set-top box crash logs. By comparing with a reference set verified by the ISP's operational group, we validate that Tiresias can achieve >94% accuracy in locating anomalies. Tiresias also discovered several previously unknown anomalies in the ISP's customer care cases, demonstrating its effectiveness
    corecore