23 research outputs found

    Automated Classification Model With OTSU and CNN Method for Premature Ventricular Contraction Detection

    Get PDF
    Premature ventricular contraction (PVC) is one of the most common arrhythmias which can cause palpitation, cardiac arrest, and other symptoms affecting the work and rest activities of a patient. However, patients hardly decipher their own feelings to determine the severity of the disease thus, requiring a professional medical diagnosis. This study proposes a novel method based on image processing and convolutional neural network (CNN) to extract electrocardiography (ECG) curves from scanned ECG images derived from clinical ECG reports, and segment and classify heartbeats in the absence of a digital ECG data. The ECG curve is extracted using a comprehensive algorithm that combines the OTSU algorithm with erosion and dilation. This algorithm can efficiently and accurately separate the ECG curve from the ECG background grid. The performance of the classification model was evaluated and optimized using hundreds of clinical ECG data collected from Fujian Provincial Hospital. Additionally, thousands of clinical ECG reports were scanned to digital images as the test set to confirm the accuracy of the algorithm for practical application. Results showed that the average sensitivity, specificity, positive predictive value, and accuracy of the proposed model on the MIT-BIH dataset were 95.47%, 97.72%, 98.75%, and 98.25%, respectively. The classification average sensitivity, specificity, positive predictive value, and accuracy based on clinical scanned ECG images can reach to 97.24%, 81.6%, 83.8%, and 89.33%, respectively, and the clinical feasibility is high. Overall, the proposed method can extract ECG curves from scanned ECG images efficiently and accurately. Furthermore, it performs well on heartbeat classification of normal (N) and ventricular premature heartbeat

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    A Novel Ontology and Machine Learning Driven Hybrid Clinical Decision Support Framework for Cardiovascular Preventative Care

    Get PDF
    Clinical risk assessment of chronic illnesses is a challenging and complex task which requires the utilisation of standardised clinical practice guidelines and documentation procedures in order to ensure consistent and efficient patient care. Conventional cardiovascular decision support systems have significant limitations, which include the inflexibility to deal with complex clinical processes, hard-wired rigid architectures based on branching logic and the inability to deal with legacy patient data without significant software engineering work. In light of these challenges, we are proposing a novel ontology and machine learning-driven hybrid clinical decision support framework for cardiovascular preventative care. An ontology-inspired approach provides a foundation for information collection, knowledge acquisition and decision support capabilities and aims to develop context sensitive decision support solutions based on ontology engineering principles. The proposed framework incorporates an ontology-driven clinical risk assessment and recommendation system (ODCRARS) and a Machine Learning Driven Prognostic System (MLDPS), integrated as a complete system to provide a cardiovascular preventative care solution. The proposed clinical decision support framework has been developed under the close supervision of clinical domain experts from both UK and US hospitals and is capable of handling multiple cardiovascular diseases. The proposed framework comprises of two novel key components: (1) ODCRARS (2) MLDPS. The ODCRARS is developed under the close supervision of consultant cardiologists Professor Calum MacRae from Harvard Medical School and Professor Stephen Leslie from Raigmore Hospital in Inverness, UK. The ODCRARS comprises of various components, which include: (a) Ontology-driven intelligent context-aware information collection for conducting patient interviews which are driven through a novel clinical questionnaire ontology. (b) A patient semantic profile, is generated using patient medical records which are collated during patient interviews (conducted through an ontology-driven context aware adaptive information collection component). The semantic transformation of patients’ medical data is carried out through a novel patient semantic profile ontology in order to give patient data an intrinsic meaning and alleviate interoperability issues with third party healthcare systems. (c) Ontology driven clinical decision support comprises of a recommendation ontology and a NICE/Expert driven clinical rules engine. The recommendation ontology is developed using clinical rules provided by the consultant cardiologist from the US hospital. The recommendation ontology utilises the patient semantic profile for lab tests and medication recommendation. A clinical rules engine is developed to implement a cardiac risk assessment mechanism for various cardiovascular conditions. The clinical rules engine is also utilised to control the patient flow within the integrated cardiovascular preventative care solution. The machine learning-driven prognostic system is developed in an iterative manner using state of the art feature selection and machine learning techniques. A prognostic model development process is exploited for the development of MLDPS based on clinical case studies in the cardiovascular domain. An additional clinical case study in the breast cancer domain is also carried out for the development and validation purposes. The prognostic model development process is general enough to handle a variety of healthcare datasets which will enable researchers to develop cost effective and evidence based clinical decision support systems. The proposed clinical decision support framework also provides a learning mechanism based on machine learning techniques. Learning mechanism is provided through exchange of patient data amongst the MLDPS and the ODCRARS. The machine learning-driven prognostic system is validated using Raigmore Hospital's RACPC, heart disease and breast cancer clinical case studies
    corecore