195,148 research outputs found

    Frequency selective lens antenna

    Get PDF
    A variant of the hemispherical microwave lens antenna is reported where the ground plane region is modified through use of a frequency selective surface. This allows discrimination of frequencies by two closely spaced primary feeds. A scale model is reported operating at 12 and 30 GHz

    An Invariant Dual-beam Snowflake Antenna for Future 5G Communications

    Get PDF
    A broadband snowflake antenna for future 5G and millimeter-wave communications is presented. The proposed antenna has a size of 8 × 5 mm 2 . The antenna consists of a central hexagon surrounded by a series of symmetrically placed smaller hexagons around it, resulting in broadband characteristics. The impedance bandwidth of the proposed antenna ranges from 25.284-29.252 GHz. The antenna has a gain of 3.12 dBi at 28 GHz and is more than 98% efficient. A distinct feature of the proposed antenna is its dual-beam radiation pattern. The two beams remain fixed at ±50° even if the frequency is varied with in its operating band. The proposed antenna is modelled on thin Rogers substrate which makes it very useful for future 5G smart phones

    RADOME ANALYSIS TECHNIQUES

    Get PDF
    Radar Dome, or usually called Radome, is usually placed over the antenna as an antenna protector from any physical thing that can break it. Ideally, radome does not degrade antenna performance. In fact, it may change antenna performance and cause several effects, such as boresight error, changing antenna side lobe level and depolarization. The antenna engineer must take stringent analysis to estimate the changes of performance due to placing radome. Methods in the analysis using fast receiving formulation based on Lorentz reciprocity and Geometrical Optics. The radome has been tilted for some angle combinations in azimuth and elevation with respect to the antenna under test in order to get the difference responses. From the results of measuring and analyzing the radome, it can be concluded that radome can change the antenna performance, including boresight shift, null fill-in and null shifting for difference signals, and changing antenna radiation pattern. In the CATR measurement with two reflectors, the extraneous signal which originates from feed is minimized by adding absorber at the side of the feed. Several things that affect to the accuracy of the simulation program are extraneous signal, loss tangent uncertainty, diffraction, and dielectric uncertainty and inhomogeneity. Key Words: Radome, CATR, Antenna, Boresight Erro

    A multi band mini printed omni directional antenna with v-shaped for RFID applications

    Get PDF
    This paper presents a mini multi-band printed omni-directional antenna with v-shaped structure for radio frequency identification (RFID) applications. The proposed multi-band antenna is developed from the initial v-shaped design which is only capable of working as a single-band antenna. By deploying a concept of dipole antenna to an initial design, the proposed antenna is accomplished to operate with two different modes of RFID system which are passive and active modes at frequencies of 915MHz and 2.45 GHz respectively. The passive RFID tag is invented when a chip of Ultra High Frequency (UHF) is integrated with a proposed multi-band antenna. This passive tag, which is able to radiate with the measured signal strength, shows that the reading ranges are boosted almost two times compared to the conventional inlay antenna. The maximum reading range of passive RFID tag with inlay antenna is 5 m, though a reading range up to 10m is achievable through the deployment of the proposed antenna at a measurement field. Implicitly, the measurements carried out on the antenna are in good agreement with the simulated values. Moreover, the size of the mobile passive RFID tag has been substantially as 100mm × 70 mm, even though the antenna is fabricated with an inexpensive FR-4 substrate material. With the reasonable gain, coupled with cheaper material and smaller size, the proposed antenna has attractive potentials for use in RFID applications with multiple frequency antenna for active and passive tags
    corecore