674 research outputs found

    Design for scalability in 3D computer graphics architectures

    Get PDF

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    A walk through the planned CS building

    Get PDF
    Using the architectural plan views of our future computer science building as test objects, we have completed the first stage of a Building walkthrough system. The inputs to our system are AutoCAD files. An AutoCAD converter translates the geometrical information in these files into a format suitable for 3D rendering. Major model errors, such as incorrect polygon intersections and random face orientations, are detected and fixed automatically. Interactive viewing and editing tools are provided to view the results, to modify and clean the model and to change surface attributes. Our display system provides a simple-to-use user interface for interactive exploration of buildings. Using only the mouse buttons, the user can move inside and outside the building and change floors. Several viewing and rendering options are provided, such as restricting the viewing frustum, avoiding wall collisions, and selecting different rendering algorithms. A plan view of the current floor, with the position of the eye point and viewing direction on it, is displayed at all times. The scene illumination can be manipulated, by interactively controlling intensity values for 5 light sources

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest
    corecore