2 research outputs found

    AMiCUS 2.0—System Presentation and Demonstration of Adaptability to Personal Needs by the Example of an Individual with Progressed Multiple Sclerosis

    No full text
    AMiCUS is a human–robot interface that enables tetraplegics to control an assistive robotic arm in real-time using only head motion, allowing them to perform simple manipulation tasks independently. The interface may be used as a standalone system or to provide direct control as part of a semi-autonomous system. Within this work, we present our new gesture-free prototype AMiCUS 2.0, which has been designed with special attention to accessibility and ergonomics. As such, AMiCUS 2.0 addresses the needs of tetraplegics with additional impairments that may come along with multiple sclerosis. In an experimental setup, both AMiCUS 1.0 and 2.0 are compared with each other, showing higher accessibility and usability for AMiCUS 2.0. Moreover, in an activity of daily living, a proof-of-concept is provided that an individual with progressed multiple sclerosis is able to operate the robotic arm in a temporal and functional scope, as would be necessary to perform direct control tasks for use in a commercial semi-autonomous system. The results indicate that AMiCUS 2.0 makes an important step towards closing the gaps of assistive technology, being accessible to those who rely on such technology the most

    Drug development progress in duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a severe, progressive, and incurable X-linked disorder caused by mutations in the dystrophin gene. Patients with DMD have an absence of functional dystrophin protein, which results in chronic damage of muscle fibers during contraction, thus leading to deterioration of muscle quality and loss of muscle mass over time. Although there is currently no cure for DMD, improvements in treatment care and management could delay disease progression and improve quality of life, thereby prolonging life expectancy for these patients. Furthermore, active research efforts are ongoing to develop therapeutic strategies that target dystrophin deficiency, such as gene replacement therapies, exon skipping, and readthrough therapy, as well as strategies that target secondary pathology of DMD, such as novel anti-inflammatory compounds, myostatin inhibitors, and cardioprotective compounds. Furthermore, longitudinal modeling approaches have been used to characterize the progression of MRI and functional endpoints for predictive purposes to inform Go/No Go decisions in drug development. This review showcases approved drugs or drug candidates along their development paths and also provides information on primary endpoints and enrollment size of Ph2/3 and Ph3 trials in the DMD space
    corecore