702 research outputs found

    HSLIC Annual Report FY2003-04

    Get PDF
    https://digitalrepository.unm.edu/hslic-annual-reports/1014/thumbnail.jp

    Dynamic Generation of a Table of Contents with Consumer-Friendly Labels

    Get PDF
    Consumers increasingly look to the Internet for health information, but available resources are too difficult for the majority to understand. Interactive tables of contents (TOC) can help consumers access health information by providing an easy to understand structure. Using natural language processing and the Unified Medical Language System (UMLS), we have automatically generated TOCs for consumer health information. The TOC are categorized according to consumer-friendly labels for the UMLS semantic types and semantic groups. Categorizing phrases by semantic types is significantly more correct and relevant. Greater correctness and relevance was achieved with documents that are difficult to read than with those at an easier reading level. Pruning TOCs to use categories that consumers favor further increases relevancy and correctness while reducing structural complexity

    Biomedical ontologies: What part-of is and isn’t

    Get PDF
    AbstractMereological relations such as part-of and its inverse has-part are fundamental to the description of the structure of living organisms. Whereas classical mereology focuses on individual entities, mereological relations in biomedical ontologies are generally asserted between classes of individuals. In general, this practice leaves some basic issues unanswered: type constraints of mereological relations, e.g., concerning artifacts and biological entities, the relation between parthood and time, inferred parts and wholes as well as a delimitation of parthood against spatial inclusion. Furthermore, mereological relations can be asserted not only between physical objects but also between biological processes and medical procedures. We analyze these ambiguities and make suggestions for a standardization of mereological relations in biomedical ontologies

    ExaCT: automatic extraction of clinical trial characteristics from journal publications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials are one of the most important sources of evidence for guiding evidence-based practice and the design of new trials. However, most of this information is available only in free text - e.g., in journal publications - which is labour intensive to process for systematic reviews, meta-analyses, and other evidence synthesis studies. This paper presents an automatic information extraction system, called ExaCT, that assists users with locating and extracting key trial characteristics (e.g., eligibility criteria, sample size, drug dosage, primary outcomes) from full-text journal articles reporting on randomized controlled trials (RCTs).</p> <p>Methods</p> <p>ExaCT consists of two parts: an information extraction (IE) engine that searches the article for text fragments that best describe the trial characteristics, and a web browser-based user interface that allows human reviewers to assess and modify the suggested selections. The IE engine uses a statistical text classifier to locate those sentences that have the highest probability of describing a trial characteristic. Then, the IE engine's second stage applies simple rules to these sentences to extract text fragments containing the target answer. The same approach is used for all 21 trial characteristics selected for this study.</p> <p>Results</p> <p>We evaluated ExaCT using 50 previously unseen articles describing RCTs. The text classifier (<it>first stage</it>) was able to recover 88% of relevant sentences among its top five candidates (top5 recall) with the topmost candidate being relevant in 80% of cases (top1 precision). Precision and recall of the extraction rules (<it>second stage</it>) were 93% and 91%, respectively. Together, the two stages of the extraction engine were able to provide (partially) correct solutions in 992 out of 1050 test tasks (94%), with a majority of these (696) representing fully correct and complete answers.</p> <p>Conclusions</p> <p>Our experiments confirmed the applicability and efficacy of ExaCT. Furthermore, they demonstrated that combining a statistical method with 'weak' extraction rules can identify a variety of study characteristics. The system is flexible and can be extended to handle other characteristics and document types (e.g., study protocols).</p

    Towards computerizing intensive care sedation guidelines: design of a rule-based architecture for automated execution of clinical guidelines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs.</p> <p>The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase.</p> <p>Methods</p> <p>A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA).</p> <p>Results</p> <p>The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows.</p> <p>Conclusions</p> <p>The framework is an effective solution for computerizing clinical guidelines as it allows for quick development, evaluation and human-readable visualization of the Rules and has a good performance. By monitoring the parameters of the patient to automatically detect exceptional situations and problems and by notifying the medical staff of tasks that need to be performed, the computerized sedation guideline improves the execution of the guideline.</p

    OQAFMA Querying Agent for the Foundational Model of Anatomy: a Prototype for Providing Flexible and Efficient Access to Large Semantic Networks

    Get PDF
    The development of large semantic networks, such as the UMLS, which are intended to support a variety of applications, requires a exible and e cient query interface for the extraction of information. Using one of the source vocabularies of UMLS as a test bed, we have developed such a prototype query interface. We rst identify common classes of queries needed by applications that access these semantic networks. Next, we survey STRUQL, an existing query language that we adopted, which supports all of these classes of queries. We then describe the OQAFMA Querying Agent for the Foundational Model of Anatomy (OQAFMA), which provides an e cient implementation of a subset of STRUQL by pre-computing a variety of indices. We describe how OQAFMA leverages database optimization by converting STRUQL queries to SQL. We evaluate the exibility and e ciency of our implementation using English queries written by anatomists. This evaluation veri es that OQAFMA provides exible, e cient access to one such large semantic network, the Foundational Model of Anatomy, and suggests that OQAFMA could be an e cient query interface to other large biomedical knowledge bases, such as the Uni ed Medical Language System

    A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs.</p> <p>Discussion</p> <p>Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the <it>Roadmap for National Action on Clinical Decision Support </it>commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government.</p> <p>Summary</p> <p>A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and standardized approaches for leveraging these knowledge repositories to generate patient-specific care recommendations at the point of care.</p

    SIFR BioPortal : Un portail ouvert et générique d’ontologies et de terminologies biomédicales françaises au service de l’annotation sémantique

    Get PDF
    National audienceContexte – Le volume de données en biomédecine ne cesse de croître. En dépit d'une large adoption de l'anglais, une quantité significative de ces données est en français. Dans le do-maine de l’intégration de données, les terminologies et les ontologies jouent un rôle central pour structurer les données biomédicales et les rendre interopérables. Cependant, outre l'existence de nombreuses ressources en anglais, il y a beaucoup moins d'ontologies en français et il manque crucialement d'outils et de services pour les exploiter. Cette lacune contraste avec le montant considérable de données biomédicales produites en français, par-ticulièrement dans le monde clinique (e.g., dossiers médicaux électroniques). Methode & Résultats – Dans cet article, nous présentons certains résultats du projet In-dexation sémantique de ressources biomédicales francophones (SIFR), en particulier le SIFR BioPortal, une plateforme ouverte et générique pour l’hébergement d’ontologies et de terminologies biomédicales françaises, basée sur la technologie du National Center for Biomedical Ontology. Le portail facilite l’usage et la diffusion des ontologies du domaine en offrant un ensemble de services (recherche, alignements, métadonnées, versionnement, vi-sualisation, recommandation) y inclus pour l’annotation sémantique. En effet, le SIFR An-notator est un outil d’annotation basé sur les ontologies pour traiter des données textuelles en français. Une évaluation préliminaire, montre que le service web obtient des résultats équivalents à ceux reportés précedement, tout en étant public, fonctionnel et tourné vers les standards du web sémantique. Nous présentons également de nouvelles fonctionnalités pour les services à base d’ontologies pour l’anglais et le français
    corecore