109 research outputs found

    Information Technology

    Get PDF
    The new millennium has been labeled as the century of the personal communications revolution or more specifically, the digital wireless communications revolution. The introduction of new multimedia services has created higher loads on available radio resources. These services can be presented in different levels of quality of service. Namely, the task of the radio resource manager is to provide these levels. Radio resources are scarce and need to be shared by many users. The sharing has to be carried out in an efficient way avoiding as much as possible any waste of resources. The main contribution focus of this work is on radio resource management in opportunistic systems. In opportunistic communications dynamic rate and power allocation may be performed over the dimensions of time, frequency and space in a wireless system. In this work a number of these allocation schemes are proposed. A downlink scheduler is introduced in this work that controls the activity of the users. The scheduler is a simple integral controller that controls the activity of users, increasing or decreasing it depending on the degree of proximity to a requested quality of service level. The scheduler is designed to be a best effort scheduler; that is, in the event the requested quality of service (QoS) cannot be attained, users are always guaranteed the basic QoS level provided by a proportional fair scheduler. In a proportional fair scheduler, the user with the best rate quality factor is selected. The rate quality here is the instantaneous achievable rate divided by the average throughput Uplink scheduling is more challenging than its downlink counterpart due to signalling restrictions and additional constraints on resource allocations. For instance, in long term evolution systems, single carrier FDMA is to be utilized which requires the frequency domain resource allocation to be done in such a way that a user could only be allocated subsequent bands. We suggest for the uplink a scheduler that follows a heuristic approach in its decision. The scheduler is mainly based on the gradient algorithm that maximizes the gradient of a certain utility. The utility could be a function of any QoS. In addition, an optimal uplink scheduler for the same system is presented. This optimal scheduler is valid in theory only, nevertheless, it provides a considerable benchmark for evaluation of performance for the heuristic scheduler as well as other algorithms of the same system. A study is also made for the feedback information in a multi-carrier system. In a multi-carrier system, reporting the channel state information (CSI) of every subcarrier will result in huge overhead and consequent waste in bandwidth. In this work the subcarriers are grouped into subbands which are in turn grouped into blocks and a study is made to find the minimum amount of information for the adaptive modulation and coding (AMC) of the blocks. The thesis also deals with admission control and proposes an opportunistic admission controller. The controller gradually integrates a new user requesting admission into the system. The system is probed to examine the effect of the new user on existing connections. The user is finally fully admitted if by the end of the probing, the quality of service (QoS) of existing connections did not drop below a certain threshold. It is imperative to mention that the research work of this thesis is mainly focused on non-real time applications.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Opportunistic traffic Offloadings Mechanisms for Mobile/4G Networks

    Get PDF
    In the last few years, it has been observed a drastic surge of data traffic demand from mobile personal devices (smartphones and tablets) over cellular networks [1]. Even though a significant improvement in cellular bandwidth provisioning is expected with LTE-Advanced systems, the overall situation is not expected to change significantly. In fact, the diffusion of M2M and IoT devices is expected to increase at an exponential pace (the share of M2M devices is predicted to increase 5x by 2018 [1]) while the capacity of the cellular network is expected to increase linearly [1]. In order to meet such a high demand and to increase the capacity of the channel, multiple offloading techniques are currently under investigation, from modifications inside the cellular network architecture, to integration of multiple wireless broadband infrastructures, to exploiting direct communications between mobile devices. All these approaches can be diveded in two main classes: - To develop more sophisticated physical layer technologies (e.g. massive MIMO, higher-order modulation schemes, cooperative multi-period transmission/reception) - To offload part of the traffic from the cellular to another complementary network. From this perspective the thesis contributes on both areas. On the one hand we discuss our investigations about the performance of the LTE channel capacity through the development of a unified modelling framework of the MAC-level downlink throughput of a sigle LTE cell, which caters for wideband CQI feedback schemes, AMC and HARQ protocols as defined in the LTE standard. Furthemore we also propose a solution, based on reinforcement learning, to improve the LTE Adaptive Modulation and coding Scheme (MCS). On the other hand we have proposed and validated offloading mechanisms which are minimally invasive for users' mobile devices, as they use only minimally their resources. Furthemore, as opposed to most of the literature, we consider the case where requests for content are non-synchronised, i.e. users request content at random points in time

    Contributions to channel modelling and performance estimation of HAPS-based communication systems regarding IEEE Std 802.16TM

    Get PDF
    New and future telecommunication networks are and will be broadband type. The existing terrestrial and space radio communication infrastructures might be supplemented by new wireless networks that make and will make use of aeronautics-technology. Our study/contribution is referring to radio communications based on radio stations aboard a stratospheric platform named, by ITU-R, HAPS (High Altitude Platform Station). These new networks have been proposed as an alternative technology within the ITU framework to provide various narrow/broadband communication services. With the possibility of having a payload for Telecommunications in an aircraft or a balloon (HAPS), it can be carried out radio communications to provide backbone connections on ground and to access to broadband points for ground terminals. The latest implies a complex radio network planning. Therefore, the radio coverage analysis at outdoors and indoors becomes an important issue on the design of new radio systems. In this doctoral thesis, the contribution is related to the HAPS application for terrestrial fixed broadband communications. HAPS was hypothesised as a quasi-static platform with height above ground at the so-called stratospheric layer. Latter contribution was fulfilled by approaching via simulations the outdoor-indoor coverage with a simple efficient computational model at downlink mode. This work was assessing the ITU-R recommendations at bands recognised for the HAPS-based networks. It was contemplated the possibility of operating around 2 GHz (1820 MHz, specifically) because this band is recognised as an alternative for HAPS networks that can provide IMT-2000 and IMT-Advanced services. The global broadband radio communication model was composed of three parts: transmitter, channel, and receiver. The transmitter and receiver parts were based on the specifications of the IEEE Std 802.16TM-2009 (with its respective digital transmission techniques for a robust-reliable link), and the channel was subjected to the analysis of radio modelling at the level of HAPS and terrestrial (outdoors plus indoors) parts. For the channel modelling was used the two-state characterisation (physical situations associated with the transmitted/received signals), the state-oriented channel modelling. One of the channel-state contemplated the environmental transmission situation defined by a direct path between transmitter and receiver, and the remaining one regarded the conditions of shadowing. These states were dependent on the elevation angle related to the ray-tracing analysis: within the propagation environment, it was considered that a representative portion of the total energy of the signal was received by a direct or diffracted wave, and the remaining power signal was coming by a specular wave, to last-mentioned waves (rays) were added the scattered and random rays that constituted the diffuse wave. At indoors case, the variations of the transmitted signal were also considering the following matters additionally: the building penetration, construction material, angle of incidence, floor height, position of terminal in the room, and indoor fading; also, these indoors radiocommunications presented different type of paths to reach the receiver: obscured LOS, no LOS (NLOS), and hard NLOS. The evaluation of the feasible performance for the HAPS-to-ground terminal was accomplished by means of thorough simulations. The outcomes of the experiment were presented in terms of BER vs. Eb/N0 plotting, getting significant positive conclusions for these kind of system as access network technology based on HAPS
    corecore