12 research outputs found

    Securing Node-RED Applications

    Get PDF
    Trigger-Action Platforms (TAPs) play a vital role in fulfilling the promise of the Internet of Things (IoT) by seamlessly connecting otherwise unconnected devices and services. While enabling novel and exciting applications across a variety of services, security and privacy issues must be taken into consideration because TAPs essentially act as persons-in-the-middle between trigger and action services. The issue is further aggravated since the triggers and actions on TAPs are mostly provided by third parties extending the trust beyond the platform providers. Node-RED, an open-source JavaScript-driven TAP, provides the opportunity for users to effortlessly employ and link nodes via a graphical user interface. Being built upon Node.js, third-party developers can extend the platform’s functionality through publishing nodes and their wirings, known as flows. This paper proposes an essential model for Node-RED, suitable to reason about nodes and flows, be they benign, vulnerable, or malicious. We expand on attacks discovered in recent work, ranging from exfiltrating data from unsuspecting users to taking over the entire platform by misusing sensitive APIs within nodes. We present a formalization of a runtime monitoring framework for a core language that soundly and transparently enforces fine-grained allowlist policies at module-, API-, value-, and context-level. We introduce the monitoring framework for Node-RED that isolates nodes while permitting them to communicate via well-defined API calls complying with the policy specified for each node

    BLE-data:a smartphone-based BLE-data collection tool

    Get PDF
    Abstract. Smart phones together with plethora of different sensors create a massive data collection system. This system can be also used for storing, analyzing, and broadcasting data. Data can be anything that can be metered or derived, from chemical compounds to traffic congestion to advertisement data to users’ activity or health statistics. Using the sensors already present in smartphones together with Bluetooth capable controller chips to add more sophisticated sensors, user creates an easily extendable monitoring system that does not require an internet connection. After embedded initialization programming, configuring and managing these chips can be done with a smartphone using Bluetooth communication stack. This study presents an Android-library for managing BLE peripherals and an app to collecting and store the recorded data. Bluetooth devices are scanned and connected through Bluetooth Low Energy interface and data is stored to persistent Room database.Tiivistelmä. Älypuhelimet yhdessä lukuisten eri antureiden kanssa luovat massiivisen järjestelmän tietojen keräämiseksi, tallentamiseksi, lähettämiseksi ja analysoimiseksi. Nämä tiedot voivat olla mitä tahansa kemiallisista yhdisteistä liikenteen ruuhkautumiseen ja mainosdatan esittämisestä käyttäjän aktiivisuuteen ja terveystilastoihin. Käyttämällä älypuhelimen valmiiksi olemassa olevia sensoreita ja yhdistelemällä niitä Bluetooth -ominaisuudella varustettuun ohjaussiruun kehittyneempien sensorien kanssa, käyttäjä saa luotua helposti laajennettavan monitorointi verkoston, joka ei vaadi internet yhteyttä. Käyttöönotettaessa tarvitun sulautetun ohjelmakoodin jälkeen, sensorilaitteita voi ohjata älypuhelimella, käyttäen Bluetooth radiota. Tässä tutkimuksessa esitellään Android-kirjasto BLE sensorien hallintaan, yhdistettynä tietojen keräämiseksi ja tallentamiseksi rakennettuun appiin. Bluetooth-laitteet skannataan ja liitetään Bluetooth Low Energy -rajapinnan kautta ja näistä luettu data tallennetaan paikalliseen Room-tietokantaan

    From distributed coordination to field calculus and aggregate computing

    Get PDF
    open6siThis work has been partially supported by: EU Horizon 2020 project HyVar (www.hyvar-project .eu), GA No. 644298; ICT COST Action IC1402 ARVI (www.cost -arvi .eu); Ateneo/CSP D16D15000360005 project RunVar (runvar-project.di.unito.it).Aggregate computing is an emerging approach to the engineering of complex coordination for distributed systems, based on viewing system interactions in terms of information propagating through collectives of devices, rather than in terms of individual devices and their interaction with their peers and environment. The foundation of this approach is the distillation of a number of prior approaches, both formal and pragmatic, proposed under the umbrella of field-based coordination, and culminating into the field calculus, a universal functional programming model for the specification and composition of collective behaviours with equivalent local and aggregate semantics. This foundation has been elaborated into a layered approach to engineering coordination of complex distributed systems, building up to pragmatic applications through intermediate layers encompassing reusable libraries of program components. Furthermore, some of these components are formally shown to satisfy formal properties like self-stabilisation, which transfer to whole application services by functional composition. In this survey, we trace the development and antecedents of field calculus, review the field calculus itself and the current state of aggregate computing theory and practice, and discuss a roadmap of current research directions with implications for the development of a broad range of distributed systems.embargoed_20210910Viroli, Mirko; Beal, Jacob; Damiani, Ferruccio; Audrito, Giorgio; Casadei, Roberto; Pianini, DaniloViroli, Mirko; Beal, Jacob; Damiani, Ferruccio; Audrito, Giorgio; Casadei, Roberto; Pianini, Danil

    RML: Runtime Monitoring Language

    Get PDF
    Runtime verification is a relatively new software verification technique that aims to prove the correctness of a specific run of a program, rather than statically verify the code. The program is instrumented in order to collect all the relevant information, and the resulting trace of events is inspected by a monitor that verifies its compliance with respect to a specification of the expected properties of the system under scrutiny. Many languages exist that can be used to formally express the expected behavior of a system, with different design choices and degrees of expressivity. This thesis presents RML, a specification language designed for runtime verification, with the goal of being completely modular and independent from the instrumentation and the kind of system being monitored. RML is highly expressive, and allows one to express complex, parametric, non-context-free properties concisely. RML is compiled down to TC, a lower level calculus, which is fully formalized with a deterministic, rewriting-based semantics. In order to evaluate the approach, an open source implementation has been developed, and several examples with Node.js programs have been tested. Benchmarks show the ability of the monitors automatically generated from RML specifications to effectively and efficiently verify complex properties

    SandTrap: Securing JavaScript-driven Trigger-Action Platforms

    Get PDF
    Trigger-Action Platforms (TAPs) seamlessly connect a wide variety of otherwise unconnected devices and services, ranging from IoT devices to cloud services and social networks. TAPs raise critical security and privacy concerns because a TAP is effectively a “person-in-the-middle” between trigger and action services. Third-party code, routinely deployed as “apps” on TAPs, further exacerbates these concerns. This paper focuses on JavaScript-driven TAPs. We show that the popular IFTTT and Zapier platforms and an open-source alternative Node-RED are susceptible to attacks ranging from exfiltrating data from unsuspecting users to taking over the entire platform. We report on the changes by the platforms in response to our findings and present an empirical study to assess the implications for Node-RED. Motivated by the need for a secure yet flexible way to integrate third-party JavaScript apps, we propose SandTrap, a novel JavaScript monitor that securely combines the Node.js vm module with fully structural proxy-based two-sided membranes to enforce fine-grained access control policies. To aid developers, SandTrap includes a policy generation mechanism. We instantiate SandTrap to IFTTT, Zapier, and Node-RED and illustrate on a set of benchmarks how SandTrap enforces a variety of policies while incurring a tolerable runtime overhead

    Securing Software in the Presence of Third-Party Modules

    Get PDF
    Modular programming is a key concept in software development where the program consists of code modules that are designed and implemented independently. This approach accelerates the development process and enhances scalability of the final product. Modules, however, are often written by third parties, aggravating security concerns such as stealing confidential information, tampering with sensitive data, and executing malicious code.Trigger-Action Platforms (TAPs) are concrete examples of employing modular programming. Any user can develop TAP applications by connecting trigger and action services, and publish them on public repositories. In the presence of malicious application makers, users cannot trust applications written by third parties, which can threaten users’ and platform’s security. We present SandTrap, a novel runtime monitor for JavaScript that can be used to securely integrate third-party applications. SandTrap enforces fine-grained access control policies at the levels of module, API, value, and context. We instantiate SandTrap to IFTTT, Zapier, and Node-RED, three popular JavaScript-driven TAPs, and illustrate how it enforces various policies on a set of benchmarks while incurring a tolerable runtime overhead. We also prove soundness and transparency of the monitoring framework on an essential model of Node-RED. Furthermore, nontransitive policies have been recently introduced as a natural fit for coarse-grained information-flow control where labels are specified at the level of modules. The flow relation does not need to be transitive, resulting in nonstandard noninterference and enforcement mechanism. We develop a lattice encoding to prove that nontransitive policies can be reduced to classical transitive policies. We also devise a lightweight program transformation that leverages standard flow-sensitive information-flow analyses to enforce nontransitive policies more permissively

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacità autonomiche è un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione e partendo dall'attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici
    corecore