775 research outputs found

    Stochastic Analysis of Non-slotted Aloha in Wireless Ad-Hoc Networks

    Get PDF
    In this paper we propose two analytically tractable stochastic models of non-slotted Aloha for Mobile Ad-hoc NETworks (MANETs): one model assumes a static pattern of nodes while the other assumes that the pattern of nodes varies over time. Both models feature transmitters randomly located in the Euclidean plane, according to a Poisson point process with the receivers randomly located at a fixed distance from the emitters. We concentrate on the so-called outage scenario, where a successful transmission requires a Signal-to-Interference-and-Noise Ratio (SINR) larger than a given threshold. With Rayleigh fading and the SINR averaged over the duration of the packet transmission, both models lead to closed form expressions for the probability of successful transmission. We show an excellent matching of these results with simulations. Using our models we compare the performances of non-slotted Aloha to previously studied slotted Aloha. We observe that when the path loss is not very strong both models, when appropriately optimized, exhibit similar performance. For stronger path loss non-slotted Aloha performs worse than slotted Aloha, however when the path loss exponent is equal to 4 its density of successfully received packets is still 75% of that in the slotted scheme. This is still much more than the 50% predicted by the well-known analysis where simultaneous transmissions are never successful. Moreover, in any path loss scenario, both schemes exhibit the same energy efficiency.Comment: accepted for IEEE Infocom 201

    Exploiting Capture Effect in Frameless ALOHA for Massive Wireless Random Access

    Full text link
    The analogies between successive interference cancellation (SIC) in slotted ALOHA framework and iterative belief-propagation erasure-decoding, established recently, enabled the application of the erasure-coding theory and tools to design random access schemes. This approach leads to throughput substantially higher than the one offered by the traditional slotted ALOHA. In the simplest setting, SIC progresses when a successful decoding occurs for a single user transmission. In this paper we consider a more general setting of a channel with capture and explore how such physical model affects the design of the coded random access protocol. Specifically, we assess the impact of capture effect in Rayleigh fading scenario on the design of SIC-enabled slotted ALOHA schemes. We provide analytical treatment of frameless ALOHA, which is a special case of SIC-enabled ALOHA scheme. We demonstrate both through analytical and simulation results that the capture effect can be very beneficial in terms of achieved throughput.Comment: Accepted for presentation at IEEE WCNC'14 Track 2 (MAC and Cross-Layer Design

    Open-Loop Spatial Multiplexing and Diversity Communications in Ad Hoc Networks

    Full text link
    This paper investigates the performance of open-loop multi-antenna point-to-point links in ad hoc networks with slotted ALOHA medium access control (MAC). We consider spatial multiplexing transmission with linear maximum ratio combining and zero forcing receivers, as well as orthogonal space time block coded transmission. New closed-form expressions are derived for the outage probability, throughput and transmission capacity. Our results demonstrate that both the best performing scheme and the optimum number of transmit antennas depend on different network parameters, such as the node intensity and the signal-to-interference-and-noise ratio operating value. We then compare the performance to a network consisting of single-antenna devices and an idealized fully centrally coordinated MAC. These results show that multi-antenna schemes with a simple decentralized slotted ALOHA MAC can outperform even idealized single-antenna networks in various practical scenarios.Comment: 51 pages, 19 figures, submitted to IEEE Transactions on Information Theor

    Characterization of Coded Random Access with Compressive Sensing based Multi-User Detection

    Get PDF
    The emergence of Machine-to-Machine (M2M) communication requires new Medium Access Control (MAC) schemes and physical (PHY) layer concepts to support a massive number of access requests. The concept of coded random access, introduced recently, greatly outperforms other random access methods and is inherently capable to take advantage of the capture effect from the PHY layer. Furthermore, at the PHY layer, compressive sensing based multi-user detection (CS-MUD) is a novel technique that exploits sparsity in multi-user detection to achieve a joint activity and data detection. In this paper, we combine coded random access with CS-MUD on the PHY layer and show very promising results for the resulting protocol.Comment: Submitted to Globecom 201

    Slotted Aloha for Networked Base Stations

    Full text link
    We study multiple base station, multi-access systems in which the user-base station adjacency is induced by geographical proximity. At each slot, each user transmits (is active) with a certain probability, independently of other users, and is heard by all base stations within the distance rr. Both the users and base stations are placed uniformly at random over the (unit) area. We first consider a non-cooperative decoding where base stations work in isolation, but a user is decoded as soon as one of its nearby base stations reads a clean signal from it. We find the decoding probability and quantify the gains introduced by multiple base stations. Specifically, the peak throughput increases linearly with the number of base stations mm and is roughly m/4m/4 larger than the throughput of a single-base station that uses standard slotted Aloha. Next, we propose a cooperative decoding, where the mutually close base stations inform each other whenever they decode a user inside their coverage overlap. At each base station, the messages received from the nearby stations help resolve collisions by the interference cancellation mechanism. Building from our exact formulas for the non-cooperative case, we provide a heuristic formula for the cooperative decoding probability that reflects well the actual performance. Finally, we demonstrate by simulation significant gains of cooperation with respect to the non-cooperative decoding.Comment: conference; submitted on Dec 15, 201
    • …
    corecore