40,907 research outputs found

    The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein-coupled receptor lysosomal sorting.

    Get PDF
    The sorting of G protein-coupled receptors (GPCRs) to lysosomes is critical for proper signaling and cellular responses. We previously showed that the adaptor protein ALIX regulates lysosomal degradation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, independent of ubiquitin-binding ESCRTs and receptor ubiquitination. However, the mechanisms that regulate ALIX function during PAR1 lysosomal sorting are not known. Here we show that the mammalian α-arrestin arrestin domain-containing protein-3 (ARRDC3) regulates ALIX function in GPCR sorting via ubiquitination. ARRDC3 colocalizes with ALIX and is required for PAR1 sorting at late endosomes and degradation. Depletion of ARRDC3 by small interfering RNA disrupts ALIX interaction with activated PAR1 and the CHMP4B ESCRT-III subunit, suggesting that ARRDC3 regulates ALIX activity. We found that ARRDC3 is required for ALIX ubiquitination induced by activation of PAR1. A screen of nine mammalian NEDD4-family E3 ubiquitin ligases revealed a critical role for WWP2. WWP2 interacts with ARRDC3 and not ALIX. Depletion of WWP2 inhibited ALIX ubiquitination and blocked ALIX interaction with activated PAR1 and CHMP4B. These findings demonstrate a new role for the α-arrestin ARRDC3 and the E3 ubiquitin ligase WWP2 in regulation of ALIX ubiquitination and lysosomal sorting of GPCRs

    Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle

    Get PDF
    Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(−/−) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling

    Exploring the functional interaction between POSH and ALIX and the relevance to HIV-1 release

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ALG2-interacting protein X (ALIX)/AIP1 is an adaptor protein with multiple functions in intracellular protein trafficking that plays a central role in the biogenesis of enveloped viruses. The ubiquitin E3-ligase POSH (plenty of SH3) augments HIV-1 egress by facilitating the transport of Gag to the cell membrane. Recently, it was reported, that POSH interacts with ALIX and thereby enhances ALIX mediated phenotypes in <it>Drosophila</it>.</p> <p>Results</p> <p>In this study we identified ALIX as a POSH ubiquitination substrate in human cells: POSH induces the ubiquitination of ALIX that is modified on several lysine residues <it>in vivo </it>and <it>in vitro</it>. This ubiquitination does not destabilize ALIX, suggesting a regulatory function. As it is well established that ALIX rescues virus release of L-domain mutant HIV-1, HIV-1Δ<sub>PTAP</sub>, we demonstrated that wild type POSH, but not an ubiquitination inactive RING finger mutant (POSH<sup>V14A</sup>), substantially enhances ALIX-mediated release of infectious virions derived from HIV-1Δ<sub>PTAP </sub>L-domain mutant (YPX<sub>n</sub>L-dependent HIV-1). In further agreement with the idea of a cooperative function of POSH and ALIX, mutating the YPX<sub>n</sub>L-ALIX binding site in Gag completely abrogated augmentation of virus release by overexpression of POSH. However, the effect of the POSH-mediated ubiquitination appears to be auxiliary, but not necessary, as silencing of POSH by RNAi does not disturb ALIX-augmentation of virus release.</p> <p>Conclusion</p> <p>Thus, the cumulative results identified ALIX as an ubiquitination substrate of POSH and indicate that POSH and ALIX cooperate to facilitate efficient virus release. However, while ALIX is obligatory for the release of YPX<sub>n</sub>L-dependent HIV-1, POSH, albeit rate-limiting, may be functionally interchangeable.</p

    Alix is required for activity-dependent bulk endocytosis at brain synapses

    Get PDF
    In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activitydependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrinindependent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations

    Refined study of the interaction between HIV-1 p6 late domain and ALIX

    Get PDF
    The interaction between the HIV-1 p6 late budding domain and ALIX, a class E vacuolar protein sorting factor, was explored by using the yeast two-hybrid approach. We refined the ALIX binding site of p6 as being the leucine triplet repeat sequence (Lxx)4 (LYPLTSLRSLFG). Intriguingly, the deletion of the C-terminal proline-rich region of ALIX prevented detectable binding to p6. In contrast, a four-amino acid deletion in the central hinge region of p6 increased its association with ALIX as shown by its ability to bind to ALIX lacking the proline rich domain. Finally, by using a random screening approach, the minimal ALIX391–510 fragment was found to specifically interact with this p6 deletion mutant. A parallel analysis of ALIX binding to the late domain p9 from EIAV revealed that p6 and p9, which exhibit distinct ALIX binding motives, likely bind differently to ALIX. Altogether, our data support a model where the C-terminal proline-rich domain of ALIX allows the access of its binding site to p6 by alleviating a conformational constraint resulting from the presence of the central p6 hinge

    Doctor of Philosophy

    Get PDF
    dissertationThe cellular protein ALIX and other ESCRT proteins facilitate topologically equivalent membrane abscission events, including viral envelope separation from host membranes, biogenesis of multi-vesicular bodies, and midbody scission at the late stage of cytokinesis. Late domain motifs displayed by retroviral Gag polyproteins are responsible for recruiting ESCRT proteins. The three best-characterized classes of late domains are: the "P(S/T)AP" late domains that bind TSG101 of the ESCRT-I complex, the "PPXY" late domains that bind NEDD4 family ubiquitin E3 ligases, and the "YPXnL" late domains that bind ALIX. ALIX also binds the ESCRT-III protein CHMP4, which recruits other ESCRT-III subunits and VPS4 complexes to carry out membrane fission. My work in this dissertation is centered on how ALIX is recruited by various retroviruses and how ALIX function is regulated in viral budding. We first determined crystal structures of ALIXBro1, ALIXV and ALIXBro1-V. Second, in order to understand how the viral Gag proteins hijack ALIX, we determined the structure of ALIXBro1-V in complex with HIV and EIAV YPXnL late motifs. Third, we used surface plasmon resonance (SPR) to map a new type of ALIX-binding elements from certain SIV strains, which do not contain the canonical YPXnL late domains and still package ALIX in the virions. Furthermore, the new ALIX-binding motifs were crystallized with ALIXBro1-V. All these late-domain ligands adopt different conformations of backbones to interact with the equivalent interface on the ALIX V domain. Based on sequence analysis, nearly every known primate lentiviruses contains an ALIX-binding site, suggesting that the ability to recruit ALIX provide a strong selective advantage for viruses. Fourth, we discovered that the fulllength ALIX is autoinhibited by its C-terminal proline-rich region (PRR), which blocks the interaction of viral late domains based on the results of isothermal titration calorimetry (ITC), SPR and small-angle X-ray scattering (SAXS). The mutation that opens the closed conformation of the V domain partitioned ALIX into membrane-containing fractions and enhanced virus budding. These observations suggest that the function of ALIX is highly regulated, and ALIX activation requires dissociation of the autoinhibitory PRR, opening of the V domain, and probably protein dimerization

    Identification and characterization of PlAlix, the Alix homologue from the Mediterranean sea urchin Paracentrotus lividus.

    Get PDF
    The sea urchin provides a relatively simple and tractable system for analyzing the early stages of embryo development. Here, we use the sea urchin species, Paracentrotus lividus, to investigate the role of Alix in key stages of embryogenesis, namely the egg fertilization and the first cleavage division. Alix is a multifunctional protein involved in different cellular processes including endocytic membrane trafficking, filamentous (F)-actin remodeling, and cytokinesis. Alix homologues have been identified in different metazoans; in these organisms, Alix is involved in oogenesis and in determination/differentiation events during embryo development. Herein, we describe the identification of the sea urchin homologue of Alix, PlAlix. The deduced amino acid sequence shows that Alix is highly conserved in sea urchins. Accordingly, we detect the PlAlix protein cross-reacting with monoclonal Alix antibodies in extracts from P. lividus, at different developmental stages. Focusing on the role of PlAlix during early embryogenesis we found that PlAlix is a maternal protein that is expressed at increasingly higher levels from fertilization to the 2-cell stage embryo. In sea urchin eggs, PlAlix localizes throughout the cytoplasm with a punctuated pattern and, soon after fertilization, accumulates in larger puncta in the cytosol, and in microvilli-like protrusions. Together our data show that PlAlix is structurally conserved from sea urchin to mammals and may open new lines of inquiry into the role of Alix during the early stages of embryo development

    Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site

    Get PDF
    The release of human immunodeficiency virus type 1 (HIV-1) and of other retroviruses from certain cells requires the presence of distinct regions in Gag that have been termed late assembly (L) domains. HIV-1 harbors a PTAP-type L domain in the p6 region of Gag that engages an endosomal budding machinery through Tsg101. In addition, an auxiliary L domain near the C terminus of p6 binds to ALIX/AIP1, which functions in the same endosomal sorting pathway as Tsg101. In the present study, we show that the profound release defect of HIV-1 L domain mutants can be completely rescued by increasing the cellular expression levels of ALIX and that this rescue depends on an intact ALIX binding site in p6. Furthermore, the ability of ALIX to rescue viral budding in this system depended on two putative surface-exposed hydrophobic patches on its N-terminal Bro1 domain. One of these patches mediates the interaction between ALIX and the ESCRT-III component CHMP4B, and mutations which disrupt the interaction also abolish the activity of ALIX in viral budding. The ability of ALIX to rescue a PTAP mutant also depends on its C-terminal proline-rich domain (PRD), but not on the binding sites for Tsg101, endophilin, CIN85, or for the newly identified binding partner, CMS, within the PRD. Our data establish that ALIX can have a dramatic effect on HIV-1 release and suggest that the ability to use ALIX may allow HIV-1 to replicate in cells that express only low levels of Tsg101

    Unraveling the role of Arabidopsis ALIX in the trafficking and turnover of abscisic acid receptors

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 22-11-2019Esta tesis tiene embargado el acceso al texto completo hasta el 22-05-2021The plant endosomal trafficking pathway controls the abundance of membrane-associated soluble proteins, as shown for abscisic acid (ABA) receptors of the PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS (PYR/PYL/RCAR) family. ABA receptor targeting for vacuolar degradation occurs through the late endosome route and depends on FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FYVE1) and VACUOLAR PROTEIN SORTING 23A (VPS23A), components of the endosomal sorting complex required for transport (ESCRT)-I complexes. FYVE1 and VPS23A interact with ALG-2 INTERACTING PROTEIN-X (ALIX), an ESCRT-III-associated protein, although the functional relevance of such interactions and their consequences in cargo sorting are unknown. Here we show that Arabidopsis thaliana ALIX directly binds to ABA receptors in late endosomes, promoting their degradation. Impaired ALIX function leads to altered endosomal localization and increased accumulation of ABA receptors. In line with this, partial loss-of-function alix-1 mutants display ABA hypersensitivity during growth and stomatal closure, unveiling a role for the ESCRT machinery in the control of water loss through stomata. ABA hypersensitive responses are suppressed in alix-1 plants impaired in PYR/PYL/RCAR activity, in accordance with ALIX affecting ABA responses primarily by controlling ABA receptor stability. ALIX-1 mutant protein displays reduced interaction with VPS23A and ABA receptors, providing a molecular basis for ABA hypersensitivity in alix-1 mutants. Our findings unveil a negative feedback mechanism triggered by ABA that acts via ALIX to control the accumulation of specific PYR/PYL/RCAR receptors.El tráfico endosomal permite a las plantas controlar la abundancia de proteínas transmembrana y proteínas solubles asociadas transitoriamente a ella como ocurre con los receptores de ácido abscísico de la familia PYR/PYL/RCAR (PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS). La degradación vacuolar de estos receptores ocurre a través de la ruta endosomal y está mediada por FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FYVE1) y VACUOLAR PROTEIN SORTING 23A (VPS23A), dos proteínas pertenecientes al complejo ESCRT-I (endosomal sorting complex required for transport). Tanto FYVE1 como VPS23A son capaces de interaccionar con ALIX (ALG-2 INTERACTING PROTEIN-X), una proteína asociada al complejo ESCRT-III. Sin embargo, la relevancia funcional de dichas interacciones y su implicación en la selección y tráfico de proteínas cargo se desconoce. En este trabajo mostramos cómo la proteína ALIX de Arabidopsis thaliana es capaz de interaccionar directamente con los receptors de ABA en endosomas tardíos, provomiendo su degradación. De hecho, alteraciones en la función de ALIX conducen a una acumulación de los receptores de ABA y a una localización subcelular alterada de los mismos. En línea con esto, los mutantes de pérdida de función alix-1, muestran hipersensibilidad al ABA durante el desarrollo y en el cierre estomático, revelando un nuevo papel de la maquinaria ESCRT en el control de la pérdida de agua a través de los estomas. Estas respuestas de hipersensibilidad que presentan los mutantes alix-1 son suprimidas cuando se elimina parcialmente la actividad de los receptores de ABA, lo cuál apoya la idea de que ALIX afecta las respuestas al ABA controlando principalmente la estabilidad de sus receptores. La proteína mutante ALIX-1 muestra una menor interacción con VPS23A y con los receptores de ABA, proporcionando una base molecular que explica la hipersensibilidad al ABA observada en los mutantes alix-1. Nuestro estudio desvela por tanto un nuevo mecanismo de regulación negativa de la ruta del ABA, que actuando a través de la proteína ALIX para controlar la acumulación de PYR/PYL/RCAR específicos

    The Phe105 Loop of Alix Bro1 Domain Plays a Key Role in HIV-1 Release

    Get PDF
    SummaryAlix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects that result from interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical “boomerang” folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently, mutation of Phe105 and surrounding residues at the tip of the loop compromise the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix
    corecore