1,546 research outputs found

    Atomic-Layer-Deposited Al2O3 on Bi2Te3 for Topological Insulator Field-Effect Transistors

    Get PDF
    We report dual-gate modulation of topological insulator field-effect transistors (TI FETs) made on Bi2Te3 thin flakes with integration of atomic-layer-deposited (ALD) Al2O3 high-k dielectric. Atomic force microscopy study shows that ALD Al2O3 is uniformly grown on this layer-structured channel material. Electrical characterization reveals that the right selection of ALD precursors and the related surface chemistry play a critical role in device performance of Bi2Te3 based TI FETs. We realize both top-gate and bottom-gate control on these devices, and the highest modulation rate of 76.1% is achieved by using simultaneous dual gate control.Comment: 4 pages, 3 figure

    MoS2 Dual-Gate MOSFET with Atomic-Layer-Deposited Al2O3 as Top-Gate Dielectric

    Full text link
    We demonstrate atomic-layer-deposited (ALD) high-k dielectric integration on two-dimensional (2D) layer-structured molybdenum disulfide (MoS2) crystals and MoS2 dual-gate n-channel MOSFETs with ALD Al2O3 as top-gate dielectric. Our C-V study of MOSFET structures shows good interface between 2D MoS2 crystal and ALD Al2O3. Maximum drain currents using back-gates and top-gates are measured to be 7.07mA/mm and 6.42mA/mm at Vds=2V with a channel width of 3 {\mu}m, a channel length of 9 {\mu}m, and a top-gate length of 3 {\mu}m. We achieve the highest field-effect mobility of electrons using back-gate control to be 517 cm^2/Vs. The highest current on/off ratio is over 10^8.Comment: submitted to IEEE Electron Device Letter

    Modulation of the high mobility two-dimensional electrons in Si/SiGe using atomic-layer-deposited gate dielectric

    Full text link
    Metal-oxide-semiconductor field-effect transistors (MOSFET's) using atomic-layer-deposited (ALD) Al2_2O3_3 as the gate dielectric are fabricated on the Si/Si1−x_{1-x}Gex_x heterostructures. The low-temperature carrier density of a two-dimensional electron system (2DES) in the strained Si quantum well can be controllably tuned from 2.5×1011\times10^{11}cm−2^{-2} to 4.5×1011\times10^{11}cm−2^{-2}, virtually without any gate leakage current. Magnetotransport data show the homogeneous depletion of 2DES under gate biases. The characteristic of vertical modulation using ALD dielectric is shown to be better than that using Schottky barrier or the SiO2_2 dielectric formed by plasma-enhanced chemical-vapor-deposition(PECVD).Comment: 3 pages Revtex4, 4 figure

    Accelerated hermeticity testing of biocompatible moisture barriers used for the encapsulation of implantable medical devices

    Get PDF
    Barrier layers for the long-term encapsulation of implantable medical devices play a crucial role in the devices’ performance and reliability. Typically, to understand the stability and predict the lifetime of barriers (therefore, the implantable devices), the device is subjected to accelerated testing at higher temperatures compared to its service parameters. Nevertheless, at high temperatures, reaction and degradation mechanisms might be different, resulting in false accelerated test results. In this study, the maximum valid temperatures for the accelerated testing of two barrier layers were investigated: atomic layer deposited (ALD) Al2O3 and stacked ALD HfO2/Al2O3/HfO2, hereinafter referred to as ALD-3. The in-house developed standard barrier performance test is based on continuous electrical resistance monitoring and microscopic inspection of Cu patterns covered with the barrier and immersed in phosphate buffered saline (PBS) at temperatures up to 95 °C. The results demonstrate the valid temperature window to perform temperature acceleration tests. In addition, the optimized ALD layer in combination with polyimide (polyimide/ALD-3/polyimide) works as effective barrier at 60 °C for 1215 days, suggesting the potential applicability to the encapsulation of long-term implants

    Comparison of ICP-AlOx and ALD-Al2O3 layers for the rear surface passivation of c-Si solar cells

    Get PDF
    The deposition rate of the standard (i.e. sequential) atomic layer deposition (ALD) process is very low compared to the plasma-enhanced chemical vapour deposition (PECVD) process. Therefore, as a short- and medium-term perspective, PECVD aluminium oxide (AlOx) films might be better suited for the implementation into industrial-type solar cells than ALD-Al 2O3 films. In this paper, we report results achieved with a newly developed PECVD deposition process for AlOx using an inductively coupled plasma (ICP). We compare the results to high-quality ALDAl2O3 films. We examine a stack consisting of a thin AlOx passivation layer and a PECVD silicon nitride (SiNy) capping layer. Surface recombination velocities below 9 cm/s were measured on low-resistivity (1.4 Ωcm) p-type crystalline silicon wafers passivated either by ICP-PECVD-AlOx films or by ALD-Al2O3 films after annealing at 425°C. Both passivation schemes provide an excellent thermal stability during firing at 910°C with SRVs below 12 cm/s for both, Al2O3/SiNy stacks and single Al 2O3 layers. A fixed negative charge of -4×10 12 cm-2 is measured for ICP-AlOx and ALD-Al2O3, whereas the interface state density is higher for the ICP-AlOx layer with values of 11.0×1011 eV-1cm-2 compared to 1.3×1011 eV -1cm-2 for ALD-Al2O3. Implemented into large-area screen-printed PERC solar cells, an independently confirmed efficiency of 20.1% for ICP-AlOx and an efficiency of 19.6% for ALD-Al2O3 are achieved.BMU/0325296Solland Solar Cells BVSolarWorld Innovations GmbHSCHOTT Solar AGRENA GmbHSINGULUS TECHNOLOGIES A
    • …
    corecore