986 research outputs found

    Security Improvements for the Automatic Identification System

    Get PDF
    The Automatic Identification System (AIS) is used aboard the vast majority of sea-going vessels in the world as a collision avoidance tool. Currently, the AIS operates without any security features, which make it vulnerable to exploits such as spoofing, hijacking, and replay attacks by malicious parties. This paper examines the work that has been done so far to improve AIS security, as well as the approaches taken on similar problems in the aircraft and vehicular mobile ad-hoc network (MANET) industries. The first major contribution of this paper is the implementation of a Software Defined Radio (SDR) AIS transmitter and receiver which can be used to conduct vulnerability analysis and test the implementation of new security features. The second contribution is the design of a novel authentication protocol which overcomes the existing vulnerabilities in the AIS system. The proposed protocol uses time-delayed hash-chain key disclosures as part of a message authentication code (MAC) appended to automatic position reports to verify the authenticity of a user. This method requires only one additional time slot for broadcast authentication compared to the existing standard and is a significant reduction in message overhead requirements compared to alternative approaches that solely rely on public key infrastructure (PKI). Additionally, there is an embedded time stamp, a feature lacking in the existing system, which makes this protocol resistant to replay attacks. A test implementation of the proposed protocol indicates that it can be deployed as a link layer software update to existing AIS transceivers and can be deployed within the current AIS technical standards as an expanded message set

    Securing Marine Data Networks in an IoT Environment

    Get PDF
    With the huge proliferation of sensory applications, the Internet of Things (IoT) is promising connectivity capacity far beyond the conventional computing platforms, with an ultimate goal of connecting all everyday objects. Sensory applications in the marine environment are foreseen to be an integral part of this connected world, forming the Internet of Marine Things (IoMaT). While some efforts that aim to establish network connectivity in such a sparse environment exist, securing these networks is still an unreached goal. This paper introduces a secure Mobile Ad-hoc/Delay Tolerant routing protocol (S-MADNET) for the marine environment over VHF equipment available on the majority of ships. The proposed secure network is designed to use the existing Automatic Identification System (AIS) that ships use for positioning and navigation aid. An IoMaT routing module that forwards marine sensory data using the proposed secure protocol is also presented, taking the AIS system level considerations into account. Furthermore, a new AIS message format with IoMaT support is proposed that accommodates the requirements of the secure routing protocol. Evaluation results show that the proposed S-MADNET routing protocol outperforms its counterparts in terms of packet delivery rates and packet duplication rates, while maintaining data security

    "Are You Planning to Follow Your Route?" The Effect of Route Exchange on Decision Making, Trust, and Safety

    Get PDF
    The Sea Traffic Management (STM) Validation project is a European based initiative which focuses on connecting and updating the maritime world in real time, with efficient information exchange. The purpose of this paper is to evaluate two functions developed during the project: a ship to ship route exchange (S2SREX) function and rendezvous (RDV) information layer, collectively referred to as S2SREX/RDV. S2SREX displays the route segment consisting of the next seven waypoints of the monitored route of a collaborating ship and the RDV layer that predicts a meeting point. S2SREX/RDV provides supplementary information to data acquired by existing navigation systems and is intended to improve situational awareness and safety through a more comprehensive understanding of the surrounding traffic. Chalmers University of Technology and Solent University completed an experiment using twenty-four experienced navigators in bridge simulators. Six traffic scenarios were developed by subject matter experts and tested with and without S2SREX/RDV functionalities. Qualitative data were collected using post-test questionnaires and group debriefs to evaluate the participants\u27 perceptions of S2SREX/RDV in the various traffic scenarios, and quantitative data were collected to assess the ship distances and behavior in relation to the International Regulations for Preventing Collisions at Sea (COLREGs). The results revealed that participants generally trusted the S2SREX/RDV information, and most used S2SREX/RDV for decision support. The quantitative assessment revealed that the COLREGs were breached more often when S2SREX/RDV was used. Experimental findings are discussed in relation to safety, trust, reliance, situational awareness, and human-automation interaction constructs

    The future is coming : research on maritime communication technology for realization of intelligent ship and its impacts on future maritime management

    Get PDF

    Study on the application of information technology in inland maritime supervision

    Get PDF

    Service-oriented agent architecture for autonomous maritime vehicles

    Get PDF
    Advanced ocean systems are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. This Thesis proposes an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. They are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The architectural foundation to achieve the ICA lays on the flexibility of service-oriented computing and agent technology. An ontological database captures the operator skills, platform capabilities and, changes in the environment. The information captured, stored as knowledge, enables reasoning agents to plan missions based on the current situation. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This Thesis also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions

    The development of a ship-server power / emission assessment model: case study on big data analysis for real-time ship operation

    Get PDF
    • …
    corecore