1,371 research outputs found

    The Transfer of Evolved Artificial Immune System Behaviours between Small and Large Scale Robotic Platforms

    Get PDF
    This paper demonstrates that a set of behaviours evolved in simulation on a miniature robot (epuck) can be transferred to a much larger scale platform (a virtual Pioneer P3-DX) that also differs in shape, sensor type, sensor configuration and programming interface. The chosen architecture uses a reinforcement learning-assisted genetic algorithm to evolve the epuck behaviours, which are encoded as a genetic sequence. This sequence is then used by the Pioneers as part of an adaptive, idiotypic artificial immune system (AIS) control architecture. Testing in three different simulated worlds shows that the Pioneer can use these behaviours to navigate and solve object-tracking tasks successfully, as long as its adaptive AIS mechanism is in place.Comment: 12 pages, 3 figures, 2 tables, 9th International Conference on Artificial Evolution (EA 09)

    Testing REF CC

    Get PDF
    cham

    Integrated satellite-terrestrial connectivity for autonomous ships:Survey and future research directions

    Get PDF
    An autonomous vessel uses multiple different radio technologies such as satellites, mobile networks and dedicated narrowband systems, to connect to other ships, services, and the remote operations center (ROC). In-ship communication is mainly implemented with wired technologies but also wireless links can be used. In this survey paper, we provide a short overview of autonomous and remote-controlled systems. This paper reviews 5G-related standardization in the maritime domain, covering main use cases and both the role of autonomous ships and that of people onboard. We discuss the concept of a connectivity manager, an intelligent entity that manages complex set of technologies, integrating satellite and terrestrial technologies together, ensuring robust in-ship connections and ship-to-outside connections in any environment. This survey paper describes the architecture and functionalities of connectivity management required for an autonomous ship to be able to operate globally. As a specific case example, we have implemented a research environment consisting of ship simulators with connectivity components. Our simulation results on the effects of delays to collision avoidance confirm the role of reliable connectivity for safety. Finally, we outline future research directions for autonomous ship connectivity research, providing ideas for further work

    New Method for Localization and Human Being Detection using UWB Technology: Helpful Solution for Rescue Robots

    No full text
    International audienceTwo challenges for rescue robots are to detect human beings and to have an accurate positioning system. In indoor positioning, GPS receivers cannot be used due to the reflections or attenuation caused by obstacles. To detect human beings, sensors such as thermal camera, ultrasonic and microphone can be embedded on the rescue robot. The drawback of these sensors is the detection range. These sensors have to be in close proximity to the victim in order to detect it. UWB technology is then very helpful to ensure precise localization of the rescue robot inside the disaster site and detect human beings. We propose a new method to both detect human beings and locate the rescue robot at the same time. To achieve these goals we optimize the design of UWB pulses based on B-splines. The spectral effectiveness is optimized so the symbols are easier to detect and the mitigation with noise is reduced. Our positioning system performs to locate the rescue robot with an accuracy about 2 centimeters. During some tests we discover that UWB signal characteristics abruptly change after passing through a human body. Our system uses this particular signature to detect human body

    A realistic evaluation of indoor robot position tracking systems: The IPIN 2016 competition experience

    Get PDF
    We report a novel open competition aimed at evaluating accurate robot position tracking in indoor environments. The competition was organized within the IPIN 2016 (Indoor Positioning and Indoor Navigation international Conference). Here, we describe the competition, the competitors and their final results. The challenges of this new competition included: tracking an industrial robot following an unknown path but with a defined ground-truth, and open positioning system to be deployed on-site, with no restrictions apart from those related to safety issues. Our aim here is to provide sufficient detail to serve as a solid basis for future competition initiatives with a similar scope, using common metrics and objective evaluation procedures. In addition, the real systems evaluated represent state-of-the-art performance, and thus offer interesting solutions to the problem posed in the competition.Agencia Estatal de InvestigaciĂłnUniversidad de Alcal
    • …
    corecore